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Abstract

We show that physical devices that perform observation, predictioreanllection share an underlying
mathematical structure. We call devices with that structure “inferencieate. We present a set of exis-
tence and impossibility results concerning inference devices. Thadesresld independent of the precise
physical laws governing our universe. In a limited sense, the impossiké#tyits establish that Laplace
was wrong to claim that even in a classical, non-chaotic universe theefatur be unerringly predicted,
given suficient knowledge of the present. Alternatively, these impossibility resuttbeaiewed as a non-

guantum mechanical “uncertainty principle”.

The mathematics of inference devices has close connections to the ratittseaf Turing Machines
(TM’s). In particular, the impossibility results for inference devices sirailar to the Halting theorem
for TM’s. Furthermore, one can define an analog of UniversalsSTWTM’s) for inference devices. We
call those analogs “strong inference devices”. We use strong irferdevices to define the “inference
complexity” of an inference task, which is the analog of the Kolmogoraagmexity of computing a string.
A task-independent bound is derived on how much the inferenceleaitypof an inference task canfir
for two different inference devices. This is analogous to the “encoding” bouverigiog how much the
Kolmogorov complexity of a string canfiiér between two UTM'’s used to compute that string. However no
universe can contain more than one strong inference device. Seagre Kolmogorov complexity of a
string is arbitrary up to specification of the UTM, there is no such arbitrssiinethe inference complexity
of an inference task.

We informally discuss the philosophical implications of these results fergvhether the universe “is” a
computer. We also derive some graph-theoretic properties goveaninget of multiple inference devices.
We also present an extension of the framework to address physideés@ised for control. We end with
an extension of the framework to address probabilistic inference.

Key words: Turing machine, automata, observation, prediction, mubkigeKolmogorov complexity
PACS 03.65.Ta, 89.20.Ff, 02.70.-c, 07.05.Tp, 89.70.Eg, 03wO0.

Email address: dhw@ptolemy.arc.nasa.gov (David H. Wolpert).
URL: ti.arc.nasa.gov/people/dhw (David H. Wolpert).

Preprint submitted to Elsevier 29 March 2008



1. Introduction

Some of the most fruitful investigations of the foundatiaigphysics began by identifying
a set of features that are present in all physical realizataf a particular type of information
processing. The next step in these investigations was teeaband formalize those shared fea-
tures. Once that was done, one could explore the mathernattagzerties of those features, and
thereby analyze some aspects of the relationship betwegicghand information processing.
Examples of such investigations include the many decade®d on the relationship between
physics and computation [11-23,22,24], the work on obsienvéhat started with Everett’'s sem-
inal paper [25], and more recent work that considers whasiptesforms physical reality might
have [26-36].

In this spirit, here we first present archetypal examplesysjral devices that perform obser-
vation, of physical devices that perform prediction, anglofsical devices that perform recollec-
tion. We then identify a set of features common to those eXxasnihis is our first contribution,
that such physical devices share those features.

Next we formalize those features, defining any device psgsgdhem to be an “inference
device”. To do this requires our second contribution: a falimation of the concept of semantic
information content Loosely speaking, we define the semantic information cariea vari-
ablesconcerning a variableto be what an external scientist can infer about what theevalu
is in their particular universe by knowing the statesoNote the central role in this definition of
the scientist external to the device. As discussed belothdrrontext of using inference devices
for observation, this central role of the external scigngisn some ways more consistent with
Wigner's view of the observation process than with the manytds view of that process.

For the remainder of the paper we develop the theory of inferelevices, thereby analyzing
numerous aspects of the relationship between physics &menation processing. Our goal in
this endeavor is to illustrate the breadth of the theory fefrence devices; an exhaustive analysis
of any one aspect of that theory is beyond what can fit intodimgle paper.

A recurring theme in our analysis of inference devices i ttedationship with Turing Ma-
chines (TM’s). In particular, there are impossibility résdor inference devices that are similar
to the Halting theorem for TM’s. Furthermore, one can defineanalog of Universal TM’s
(UTM’s) for inference devices. We call those analogs “styarference devices”.

A central result of this paper is how to use strong inferermdags to define the “inference
complexity” of an inference task, which is the analog of th@riogorov complexity of com-
puting a string. A task-independent bound is derived on hawhthe inference complexity of
an inference task canfir for two diferent inference devices. This is analogous to the “encod-
ing” bound governing how much the Kolmogorov complexity aftang can difer between two
UTM'’s used to compute that string. However no universe carain more than one strong in-
ference device. So whereas the Kolmogorov complexity afiagsts arbitrary up to specification
of the UTM, there is no such arbitrariness in the inferencamexity of an inference task.

After presenting inference complexity, we informally diss the philosophical implications
of all of our results to that point. In particular, we discugsat it might mean for the universe
to “be” a computer. We also show how much of philosophy candoeiced to constraint satis-
faction problems, potentially involving infinite-dimensial spaces. We follow this discussion by

1 In contrast to the concept of syntactic information contehipse formalization by Shannon is the basis of conventional
information theory [37].



deriving some graph-theoretic properties governing thesitde inference relationships among
any set of multiple inference devices in the same universe.

Our next contribution is an extension of the inference devitamework to include physical
devices that are used for control. Associated impossjilygisults provide fundamental limits on
the capabilities of physical control systems. After thispresent an extension of the framework
to probabilistic inference devices. Of all the results iis thaper, it is the impossibility results
concerning probabilistic inference devices that are thetraimnilar to quantum mechanical im-
possibility results. We end by presenting an extension @fthmework that clarifies its relation
with semantic information.

The crucial property underlying our results is that infe®devices are embodied in the very
physical system (namely the universe) about which they aidang inferences. This embedding
property and its consequences have nothing to do with thaseréaws governing the underly-
ing universe. In particular, those consequences do nohtievzhaotic dynamics as in [17,18],
nor quantum mechanical indeterminism. Similarly, theylpppdependent of the values of any
physical constants (in contrast, for example, to the workLR]), and more generally apply to
every universe in a multiverse. Nor do the results presumigdtions on where in the Chomsky
hierarchy an inference device lies. So for example they daplply to oracles, if there can be
oracles in our universe. In the limited sense of our impdlisibesults, Laplace was wrong to
claim that even in a classical, non-chaotic universe theréutan be unerringly predicted, given
suficient knowledge of the present [38]. Alternatively, thasg@ossibility results can be viewed
as a non-quantum mechanical “uncertainty principle”.

All non-trivial proofs are in App. A. An earlier analysis agdsing some of the issues consid-
ered in this paper can be found in [26].

1.1. Notation

We will take the set of binary numbeBsto equal{—1, 1}, so that logical negation is indicated
by the minus sign. We will also tak® to be the Heaviside theta function that equals 1 if its
argument is non-negative, 0 otherwisé.is the natural numbers, 2,.... For any function
with domainU, we will write the image oJ underT” asT'(U). For any functiol” with domain
U that we will consider, we implicitly assume thiafU) contains at least two distinct elements.
For any (potentially infinite) setV, |W| is the cardinality oW. For any real numbea € R, [a
is the smallest integer greater than or equa.t&iven two functiond’; andI', with the same
domainU, we writel'; ® I'; for the function with domaird obeyingu € U :— (['1(u), I'2(u)),
and with some abuse of terminology refer to this as the “peticaf I'; andl,.

Given a functionl” with domainU, we say that the partitiomduced by T is the family of
subsetdI'1(y) : y € T'(U)}. Intuitively, it is the family of subsets dfl each of which consists
of all elements having the same image unbde¥We will say that a partitiorA over a spac&J
is afine-graining of a partitionB over U (or equivalently thaB is a coarse-graining of) iff
everya € Ais a subset of somee B. Two partitionsA andB are fine-grainings of each othd¥ i
A = B. Say a partitiorA is finite and a fine-graining of a partitidd Then|A| = |B| iff A = B.

Given a probability measure, the mutual information betwige associated random variables
a, b conditioned on evert is writtenM(a, b | ¢). The Shannon entropy of random variahles
H(a).



2. Archetypal examples

We now illustrate that many (if not all) physical realizatfoof the processes of observation,
prediction, and memory share a certain mathematical streiciVe do this by semi-formally
describing each of those processes, one after the othedn. stmh description uses language
that is purposely very similar to the other descriptionss that very similarity of language that
demonstrates that the same mathematical structure asgestaof each of the processes. In the
following sections of this paper we will formalize that mathatical structure, and then present
our formal results concerning f.

If the reader becomes convinced of this shared mathematicaiture before reading through
all the examples, (s)he is encouraged to skip to the nexiosedt is in that section that we
formalize the shared mathematical structure, as an “interelevice”.

In all of the examples in this sectiob), is the space of all worldlines of the entire universe
that are consistent with the laws of physics (whatever thay be), andi indicates an element
ofU.?

Example 1: We start by describing a physical system that is a generglgse observation de-
vice, capable of observing ftierent aspects of the universe. L®the some particular variable
concerning the universe whose value at some tinvee want our device to observe. If the uni-
verse’s worldline iqy, then the value o8 att; is given by some function af (e.g., it could be
given by a component af). Write that function a§’; S(t;) = T'(u).

The observation device consists of two parts, an observatiparatus, and a scientist who
uses (and interprets) that apparatus. To make our obsmry#tie scientist must first configure
the observation apparatus to be in some appropriate stateret timet; < t,. (The idea is that
by changing how the observation apparatus is configureddieatst can change what aspect
of the universe he observes.) That configuration of the eafien apparatus df is also given
by a function of the entire universe’s worldling since the observation apparatus exists in the
universe. Write that function as with rangey(U).

The hope is that if the apparatus has been properly configiireni sometime aftey it couples
with S in such a way that at some tintg > t,, the output display of the observation apparatus
accurately reflect$(t,). Again, that output display exists in the universe. So tisdesatt; is a
function ofu; write that function ag.

The scientist reads the output of the apparatus and interfitat output as this attempted
observation of5(t,). It is this interpretation that imbues that output with setic information.
Without such interpretation the output is just a meanirg{@spattern, one that happens to be
physically coupled with the variable being observed. (ifegetfalls in a forest, but the video that
recorded the fall is encrypted in a way that the scientishoanndo, then the scientist does not
“observe” the tree fall by watching the video.)

2 Some might quibble that one of the descriptions in our examgiesld involve additional structure, that what is
presented in that example does not fully capture the physioaksses it claims to describe. (See App. B.) The important
point is that the structure presented in these examples &yalfound in real-world instances of the physical processes
they (claim to) describe. Whether or not additional struetishould” be presented is not relevant. The structure that i
presented is dticient to establish our formal results.

3 For expository simplicity we use the language of non-quantaachanical systems in this paper. However most of
what follows holds just as well for a quantum-mechanical uisggif we interpret quantum mechanics appropriately.
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Loosely speaking then, we take the semantic informatiomnvafri@bles concerning a variable
r to be what an external scientist can infer aboby knowing the state of. We formalize this
by requiring that the scientist can ask questions of the 49desS(t,) = K?” attz, and that'(u)
provides the scientist with (possibly erroneous) answeith questions. As an example, say
thatZ(u) is a display presenting integers from 0 to 1000, inclusivith a special 'error’ symbol
for integers outside of that range. Since the scientistgiggs the value on that display tatas
the outcome of the observation 8ft,), by looking at the display &t the scientist is provided
with (possibly erroneous) answers to the question “Dogs) = K?” for all 1001 values oK
that can be on the display.

To make this more precise, first note that any question likee€s(t,) = K?” can either be
answered 'yes’ or 'no’, and therefore is a binary functiomofFor everyK, write this associated
binary function ofu asqx; YK, Yu € U, gk (u) = 1 if S(t2) = I'(u) = K, and it equals -1 otherwise.
Next, note that the brain of the scientist exists in the usigeSo which (if any) of a set of such
possible binary questions concerning the universe thetssiés asking ats is also a function
of u. We write that function a®. In particular, we presume that any questanis one of the
elements in the range @, i.e., it is one of the questions that (depending on the sththe
scientist’s brain then) the scientist might be asking.at

Now for any particular questiogk the scientist might be asking &, the answer that the
scientist provides by interpreting the apparatus’ outpw@ bit. The value of that bit is specified
by the state of the scientist’s braintat (The premise being that the state of the scientist’s brain
was dfected by the scientist's reading and then interpreting fhEaeatus’ output.) So again,
since the scientist’s brain exists in the universe, theesafithat answer bit is a function af We
write that function a¥.

It is the combination ofQ andY that comprise the scientist’s “interpration” f and thereby
imbue any particulag(u) with semantic contenQQ(u) specifies a questiogk . £(u) then causes
Y(u) to have some associated value. We take that value to becfteist’s interpretation of) the
apparatus’ answer to the question of whettpefu) = 1 or g (u) = —1 (i.e., of whetheS(ty) =
K). Combining,Z(u) causesy(u) to have a value that we take to be (the scientist’s inteigmat
of) the apparatus’ answer to wheth&()1(u) = 1 or [Q(u)](u) = -1.

This scenario provides a set of requirements for what it mdanthe combination of the
observation apparatus and the scientist using that apisaabe able to successfully observe the
state ofS att,: First, we require that the scientist can configure the aparn such a way that
its output attz givesI'(u). We also require that the scientist can read and interpegtdutput.
This means at a minium that for any question of the form “Dbg§ = K?” the scientist can
both ask that question &tand interpret(u) to accurately answer it.

To formalize this, we introduce a set of binary functionshwdbmainl'(U): VK, fx : y — 1iff
v = K. Note that we have one such function for evirg I'(U). Our requirement for successful
observation is that the observation apparatus can be coafigo that, for anyy, if the scientist
were to consider an associated binary questio ahd interpret/(u) to answer the question,
then the scientist's answer would necessarily edudl(u)). In other words, there is a value
¢ € y(U) such that for anK € T'(U), there is an associategd € Q(U) such that the combination
of y(u) = candQ(u) = gk implies thatY(u) = fx(['(u)).

Intuitively, for the scientist to use the apparatus to “ole&S(t,)” only means the scientist
must configure the apparatus appropriately; the scientist force the universe to have a world-
line u such thajy(u) = ¢, and that must in turn cauggu) to accurately givé'(u). In particular,
to “observeS(t,)” does not require that the scientist impose any particedre onQ(u). Rather
Q's role is to provide a way to interprétu). The only requirement made Qf is thatif the sci-
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entist were to ask a question like “Do8¢t,) equalK?”, thenQ(u) — determined by the state
of the scientist’s brain & — would equal that question, and the scientist’s ansvi{ej would

be appropriately set by(u). It is by usingQ this way that we formalize the notion th&fu)
conveys information to the scientist concernB(,). The “observation is successful” if for any
such question the scientisight pose (as reflected iQ(u)), their associated answer (as reflected
in Y(u)) properly matches the state &fatt,.

We can motivate this use @} in a less nuanced, more direct way. Consider a scenario where
the scientist camt both pose all binary-valued questiofis concerningS(t;) and correctly an-
swer them using the apparatus outg(ft)). It would seem hard to justify the view that in this
scenario the combination of the scientist with the apparatakes a “successful observation”
concerningS(t).

Note that by defining an observation device as the combimaifoan observation appara-
tus with the external scientist who is using that apparatgsare in a certain sense arriving at
a Wignerian approach to observation. In contrast to a moadgst-forward many-worlds ap-
proach, we require that the state of the observation apgarait just be correlated with the
variable being observed, but in fact contain semantic mdion concerning the variable be-
ing observed. This makes the external scientist using tiserghtion apparatus crucial in our
approach, in contrast to the case with the many-worlds aopro

Example 2: This example is a slight variant of Ex. 1. In this variant,rthés no scientist, just
“inanimate” pieces of hardware.

We change the apparatus of Ex. 1 slightly. First, we make thpub/ be binary-valued. We
also change the configuration functipnso that in addition to its previous duties, it also specifies
a question of the form, “Dod3yu) equalK?”. Then observation is successful if for akye T'(U),
the apparatus can be configured appropriately, so that ifgibaorrectly answers the question
of whetherS(t,) equalsK. In other words, observation is successful if for &g I'(U) there is
an associated € y(U) such that having(u) = c implies thatY(u) = fx (T'(u)).

Example 3: We now describe a physical system that is a general-purpesiiction device,
capable of correctly predictingftierent aspects of the universe’s future. Bdie some particular
variable concerning the universe whose value at somettime want our device to predict. If
the universe’s worldline is, then the value 08 att; is given by some function af which we
write asI'; S(t2) = T'(u).

The prediction device consists of two parts, a physical ageypand a scientist who programs
that computer to make the prediction and interprets the coens output as that prediction. To
“program the computer” means that the scientist initialiteat some timd; < t, to contain
some information concerning the state of the universe anghta simulation of the dynamics of
the universe that uses that information. Accordingly, tmotgam the computer” to perform the
prediction means making it be in some appropriate state @fhe idea is that by changing how
the computer is programmed, the scientist can change wpatisf the universe the computer
predicts.) That initialization of the computer is also gidgy a function of the entire universe’s
worldline u, since the computer exists in the universe. Write that foncisy, with rangey(U).

The hope is that if the computer is properly programmed,ahen it runs a simulation con-
cerning the evolution of the universe that completes at domet; > t;, and at that time displays
a correct prediction o$(t2) on its output. (In general we would like to also hayex t,, so that
the simulation completes before the event being prediatedhlly occurs, but we don’t require
that.) Again, that output display exists in the universeitSatate ats is a function ofu; write
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that function ag’.

The scientist reads the output of the computer and intexjitras this attempted prediction of
S(t), thereby imbuing that output with semantic meaning. Maeijsely, for the valug(u) to
convey information to the scientist@@at we require that the scientist can ask questions of the sort,
“Does S(t;) = K?” atts, and that’(u) provides the scientist with (possibly erroneous) answers
to such questions.

As in Ex. 1, to make this more formal, we note that any quedti@n“Does S(t;) = K?"is a
binary function ofu, of the sortgk presented in Ex. 1. Also as in Ex. 1, the brain of the scientist
exists in the universe. So which (if any) of a set of possihlestions concerning the universe
the scientist is asking & is also a function ofi, which we again write a®. Also as in Ex. 1,
the answer of the scientist to any such question is a bit tieegtientist generates by interpreting
Z(u). Since that answer is given by the state of the scientiséiintatts, it is a function ofu,
which as before we write a6.

So for the combination of the computer and the scientistgufiat computer to be able to
successfully predict the state 8fat t, means two things: First, we require that the scientist
can program the computer in such a way that its outpts givesI'(u). We also require that
the scientist can read and interpret that output. More pedgiour requirement for successful
prediction is that the computer can be programmed so thagrfp fy, if the scientist were to
consider an associated binary questiotzatnd interpret’(u) to answer the question, then the
scientist’s answer would necessarily eqfiag{l’(u)). In other words, there is a valuee y(U)
such that for anyK e I'(U), there is an associatagk € Q(U) such that the combination of
x(u) = candQ(u) = gk implies thaty(u) = fx(T'(u)).

Just as in Ex. 1, for the scientist to use the apparatus tadligir8(t,)” only means the scientist
must program the computer appropriately; the scientist fiouse the universe to have a world-
line u such thaj(u) = ¢, and that must in turn caugéu) to accurately givé&'(u). In particular, to
“predict S(t,)” does not require that the scientist impose any partiotdére onQ(u). As before,

Q's role is to provide a way to interpréfu).

Note that the “computer” in this example is defined in termsvbét it does, not in terms of
how it does it. This allows our formalization of predictiamavoid all issues of where exactly in
the Chomsky hierarchy some particular physical computghtrie.

Nothing in the formalizations ending Ex.’s 1 - 3 relies on fiiecise choices of time-ordering
imposed on the valudsg, t,, t3, t4. Those formalizations only concern relations betweentfans
T, fx, Q,¢ andY, each having the entire worldline across all time as its doniis fact means
that the same sort of formalization can be applied to “rettazh”, as elaborated in the following
example.

Example 4: Say we have a system that we want to serve as a general-pugmusding and
recollection device, capable of correctly recordinfjetient aspects of the universe and recalling
them at a later time. LeB be some particular variable concerning the universe whake\at
some timé, we want our device to record. If the universe’s worldling,ishen the value o6 at

t, is given by some function af which we write function a§’; S(t;) = I'(u).

The recording device consists of two parts. The first is a ighysecording apparatus that
records many characteristics of the universe. The secanddintist who queries that apparatus
to see what it has recorded concerning some particular ctegistic of the universe, and inter-
prets the apparatus’ response as that recording. To “gberggparatus” means that the scientist
makes some variable concerning the apparatus be in an ajgeogtate at some tine > t,.
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(The idea is that by changing how the apparatus is queriedsdientist can change what aspect
of the universe’s past the apparatus displays to the ssigrifhat state imposed on the variable
concerning the apparatus tatis also given by a function of the entire universe’s worldlin
since the apparatus exists in the universe. Write that fometsy, with rangey(U).

The hope is that if the apparatus functions properly andapgnly queried at;, then it re-
trieves an accurate recording 8{t,), and displays that recording on its output at some time
t3 > t1. Again, that output display of the apparatus exists in thgarse. So its state & is a
function ofu; write that function ag.

The scientist reads the output of the apparatus and interfiras this recording o8(t,),
thereby imbuing that output with semantic meaning. Moreigedy, for the valug(u) to convey
information to the scientist &, we require that the scientist can ask questions of the"&wgs
S(tp) = K?" atts, and that’(u) provides the scientist with (possibly erroneous) answeessich
guestions.

As in Ex. 1, to make this more formal, we note that any suchtipress a binary function of,
of the sortgk presented in Ex. 1. Also as in Ex. 1, the brain of the scieakists in the universe.
So which (if any) of a set of possible questions concernimguthiverse the scientist is asking at
t3 is also a function ofi, which we again write a®. Also as in Ex. 1, the answer of the scientist
to any such question is a bit that the scientist generatestegpiretings(u). Since that answer is
given by the state of the scientist’s brairtatit is a function ofu, which as before we write &

So for the combination of the apparatus and the scientisgusiat apparatus to be able to
successfully record and recall the stateSoét t, means two things: First, we require that the
scientist can query the apparatus in such a way that its patpsigivesI'(u). We also require
that the scientist can read and interpret that output. Mageigely, our requirement for successful
recording and recollection is that the apparatus can beegliso that, for anyfk, if the scientist
were to consider an associated binary questio ahd interpret/(u) to answer the question,
then the scientist's answer would necessarily eduél’(u)). In other words, there is a value
¢ € x(U) such that for anK € I'(U), there is an associateg € Q(U) such that the combination
of y(u) = candQ(u) = gk implies thatY(u) = fx(I(u)).

Just as in Ex. 1, for the scientist to use the apparatus taftr8¢t,)” only means the scientist
must query the apparatus appropriately; the scientist fotst the universe to have a worldline
u such thaty(u) = ¢, and that must in turn cauggu) to accurately givd(u). In particular, to
“recall S(t,)” does not require that the scientist impose any particuddue onQ(u). As before,
Q's role is to provide a way to interprétu).

Note that nothing in this example specifies how the recorgingess operates. This is just like
how nothing in Ex. 1 specifies how the observation apparaiuples withS, and how nothing
in Ex. 3 specifies what simulation the computer runs.

See [39,11,30] for discussion about the crucial role thetltection devices play in the psy-
chological arrow of time, and of the crucial dependence chsievices on the second law of
thermodynamics. As a result of their playing such a role Jithéations on recollection devices
derived below have direct implications for the psycholagand thermodynamic arrows of time.

Just as Ex. 2 varies Ex. 1 by removing the scientist, so Exas®4 can be varied to remove
the scientist.



3. Basic concepts

In this section we first formalize the mathematical struetinat is shared among Ex.’s 1-4 of
Sec. 2. In doing so we substantially simplify that structédtier this formalization of the shared
structure in the examples we present some elementarysesuiterning that structure.

3.1. Inference devices

Definition 1: An (inference) deviceover a setJ is a pair of functionsX, Y), both with domain
U. Y is called theconclusionfunction of the device, and is surjective orio X is called the
setupfunction of the device.

As an illustration, in all of Ex.'s 1-4, the setup functiortliee composite functiony Q), and the
conclusion function i¥. More generally, the value of(u) should be viewed as how the device is
initialized/ configured. The value of (u) should instead be viewed as all that the device predicts
/observegrecollects when it is doné priori, we assume nothing about hotandy are related.
Note that we do not require that the compound mégrj : u e U — (X Y)(u) is surjective.
There can be pairs of valugss X(U), y € Y(U) that never arise for the sarne

Given some functio” with domainU and somey € I'(U), we are interested in setting up a
device so that it is assured of correctly answering wheftigy = y for the actual universae.
Loosely speaking, we will formalize this with the condititratY(u) = 1 iff ['(u) = y for all u
that are consistent with some associated setup value ottheadi.e., such that(u) = x. If this
condition holds, then setting up the device to have setupevagjuarantees that the device will
make the correct conclusion concerning wheth@r) = y. (Hence the terms “setup function”
and “conclusion function” in Def. 1.)

Note that this desired relationship betweénY andTI’ can hold even ifX(u) = x doesn’t
fix a unique value fory(u). Such non-uniqueness is typical when the device is beieg &
observation. Setting up a device to observe a variabledwritsi that device restricts the set of
possible universes; only thosare allowed that are consistent with the observation déxéaag
set up that way to make the desired observation. But typi¢a#it setting up an observation
device to observe what value a variable has doesn’t unidietllge value of that variable.

In general we will want to predigtobserve recollect a functior” that can take on more than
two values. This is done by appropriately choosK(@). As mentioned X(u) specifies what is
known about the outside world together with a simulationgpam (in the case of computer-
based prediction), or a specification of how to set up an ehien apparatus (in the case of
observation), or a specification of what to remember (in gieecof a memory device). But in
addition, in all those cases(u) specifies one of the possible valueslif) (i.e., it specifies a
guestion of the form “Doe&'(u) = y?"). We then view the device’s conclusion bit as saying
whetherT'(u) does/ doesn'’t have that specified value. So for example if our @eig@ computer
being used to predict the value of some variable concerhi@gtate of the world, then formally
speaking, the setup of the computer specifies a particuapbthe possible values of that vari-
able (in addition to specifying other information like wisiinulation to run, what is known about
the outside world, etc.). Our hope is that the computer'sksion bit correctly answers whether
the variable has that value specified in the how the compsitsetiup.

Intuitively, this amount to using a unary representatiofi(af). To formalize this with minimal
notation, we will use the following shorthand:
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Definition 2: Let A be a set having at least two elementgprabe of Ais a mapping fronA onto
B that equals 1 for one and only one argumertA.

So a probe ofA is a function that picks out a single one Ak possible values, i.e., it is a
Kronecker delta function whose second argument is fixedydrase image value 0 is replaced
by -1.

3.2. Notation for inference devices

We now have the tools to define what it means for an infereneieeléo successfully observe
/ predict/ recall. Before presenting that definition we introduce sarseful notation.

Unless specified otherwise, a device written &g for any integeri is implicitly presumed
to have domairJ, with setup functionX; and conclusion functiolY; (and similarly for no sub-
script). Similarly, unless specified otherwise, exprassidke “min,” mean minexuy-

We define a probe of a device to be a probe of the image of theas\donclusion function.
Given a functionl” with domainU and a probef of I'(U), we write f(I') as shorthand for the
functionu e U — f(I'(u)). We writer(A) to indicate the set of all probes of a ggtandn(I') to
indicate the set of functions ovét, {f([) : f € x#(T'(U))}.

Note that by using probes, we avoid the need to consider tigesaof any function involved
in the analysis, and in particular avoid concern for whethah a range “matches up” with
the domains anfdr ranges of other functions. Using probes allows us to redie analysis to
gueries concerning membership in a set, and thereby reduseaaes to bits. (See [26] for a
more elaborate way of circumventing the need of those ratugesitch.)

We now introduce some notation that is frankly cumbersomgenbecessary for complete pre-
cision. Letb be a value in some space. Then we delirms the constant function over whose
value isb, i.e.,u € U — b. Intuitively, the underline operator takes any constamt produces
an associated constant-valued function dveAs a particular example, |€tbe a function with
domainU. Thenr is the constant function ovér whose value is the functidn i.e.,ue U —» T.
Similarly, let B be a set of functions with domaid, and letA be a function with domaitJ
whose range i (so eachA(u) is a function ovelJ). Then we define\ as the function taking
ue U — [A(U)](u). So the overline operator turns any function ollewhose range is functions
overU into a single function oveld . Both the underline and overline operators turn mathemati-
cal structures into functions over; they difer in what type of argument they take. In particular,
for any function” overU, () =T

Finally, say we are given a set of functions ougr{D1,d;, Dy, dy, ... E1, €1, Ep, €,...}. Then
with some abuse of terminology, we writ®f = d;,D, = dp,... = E; = e,Ex = &,..."
as shorthand ford u € U such thatD;(u) = di(u),D, = dp,..., andV u € U such that
D1(u) = di(u), D2 = dy,..., itis the case thaE;(u) = ey (u), ex(u) = Ex(u),...". We will often
abuse notation even further by allowidg to be an element dD,’s range. In this case[D; =
d; = E; = e" is shorthand for D; = dy = E; = ¢, and reduces to3u € U such that
D; = dy, and¥ u € U such thatD(u) = dy, it is also the case th&;(u) = e;(u)”. (Using this
notation is more intuitive in practice than these compédadefinitions might suggest.)
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3.3. Weak inference

We can now formalize inference as follows:

Definition 3: A deviceC (weakly) infers a functionT” over U iff Vf € n('), 3 x such that
X=x=Y=1f{).

So using the definitions in the previous subsect®meakly infersr iff Vf € n('), 3 x € X(U)
such that for alu € U for which X(u) = x, Y(u) = f(I'(u)).

Recall our stipulation that all functions ovidrtake on at least two values, and so in particular
I must. Therefore(') is non-empty. We will writeC > T if C infersT". Expanding our shorthand
notation,C > I means that for aly € I'(U), Ax € X(U) with the following property¥u € U :
X(u) = x, it must be thatr(u) = f,(I'(u)), wheref, : I'(U) — B is the probe of”s range that
equals 1ff I'(u) = y.

Intuitively, to haveC > ' means that if the image value Bis expressed as a list of answers to
guestions of the form “Dods(u) = y?”, then we can set up the device so that it will guaranteedly
correctly conclude any particular answer in that list. Altively, the requirement that there be
an appropriatex for any probe function of’ can be viewed as shorthand; in the definition of
inference we are considering the ability of a device to adlyeanswer any member of a list of
binary-valued questions, a set that is “generatedl"by

To illustrate this, consider again Ex. 1. Identify thein Def. 3 with theY in Ex. 1, and
similarly identify theI’s with each other. Then identify the functiofiin Def. 3 as the product
of functions,y ® Q. (X, Y) specifies a devic€. The functionsfy in Ex. 1 are the probes m(T').

So if C > T, then the aggregate system of scientist and observaticaraipis can obseng&(t,).
Note thatZ ends up being irrelevant. In essence, it serves as a coodtarisfer information into
the scientist’s brain.

In the many-worlds definition of an observation, any paftéicuesult of the observation is
identified with a solitary worldlinau. Intuitively, this might be worrisome; a solitaryis just a
single point in a space, with no intrinsic mathematical&ite. The properties of such a single
point can be drastically modified by an appropriate isomismphoverU. In particular, as has
been pointed out by many authors, in the many-worlds dedimitvhat gets “observed” can be
modified if one changes the basisdf (This is one of the major motivations for the work on
decoherence [40,41].)

However if a scientist makes an observation, then that sstesould provide the value of
any (binary-valued) function of the result of the observatiif they were asked to. So formally
requiring that the scientist be able to provide such valwesd't preclude real-world instances
of observation. At the same time, adding such a requiremastshbstantial consequences. In
fact, it drives many of the results presented below conogrmieak inference. This is why this
requirement is incorporated into the definition of weak iafee. In other words, it is why the
definition of weak inference inherently involves multipl®ridlinesu, in contrast to the many-
worlds definition of observation.

See Sec. 6.2 for a discussion of the philosophical aspectgeak inference. The relation
between weak inference and the theory of knowledge furstjéR—45] is briefly discussed in
Sec. 9. App. B contains a discussion of how unrestrictivedifinition of weak inference is.
Finally, some alternative definitions of devices and wedéreance are considered in App. C.
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3.4. Elementary results concerning weak inference

We say that a devic€; infers a set of functions if it infers every function in thatsWe also
sayC; infers a deviceC, iff C; > Y. In general inference among devices is non-transitive. In
addition we have the following elementary properties ofices:

Proposition 1: Let {I';} be a set of functions with domalh andW c U.
i) If Vi, |I(W)| > 2, then there is a device overthat infers{T}.
i) For any deviceC, there is a binary-valued function th@tdoes not infer.

Prop. 1(ii) means in particular that there are $Etssuch that no device can infer every function
in that set.

In a limited sense, when applied to prediction (cf. Ex. 1h@Prl(ii) means that Laplace was
wrong: even if the universe were a giant clock, he would ngetigeen able to reliably predict the
universe’s future state before it occurrédviewed diferently, Prop. 1(ii) means that regardless
of noise levels and the dimensions and other charactevigfithe underlying attractors of the
physical dynamics of various systems, there cannot be aderies prediction algorithm [48]
that is always correct in its prediction of the future stdteuxh systems.

Note that time does not appear in Def. 3's model of a predicsigstem. So in particular in
Ex. 3 we could haves < t, — so that the time when the computer provides its prediction i
after the event it is predicting — and the impossibility result @bp. 1(ii) still holds (cf. Ex.
4). Moreover, the program that is input to the prediction pater via the value of could even
contain the value that we want to predict. Prop. 1(ii) wouiliimean that the conclusion that the
computer’s user comes to after reading the computer’s dbagmnot be guaranteed to be correct.

This is all true even if the computer has super-Turing cdjpgband does not derive from
chaotic dynamics, physical limitations like the speedgffili or quantum mechanical limitations.
Indeed, when applied to an observation apparatus like inLERrop. 1(ii) can be viewed as a
sort of non-quantum mechanical “uncertainty principlestablishing that there is no general-
purpose, infallible observation device. (See also Propelévip which is perhaps more closely
analogous to the uncertainty principle.) In addition, wiagplied to the recording apparatus of
Ex. 4, Prop. 1(ii) means that there is no general-purposa|ible recording device.

To illustrate this in more detail, consider the relativelygle scenario wher€ is a computer
making a prediction at timeabout the state of the (deterministic, classical) univatsé > t.
Let G be the set of all timé-states of the universe in whig®s output display is+1. The laws
of physics can be used to evol@&forward to timet’. Label that evolved set of timg-states of
the universe asl. LetT" be the binary-valued question, “does the state of the usgvatt’ lies
outside ofH?".

There is no information concerninlg that can be programmed inf® at some timg~ < t
that guarantees that the resultant prediction@atakes at is a correct answer to that question.
This is true no matter what is, i.e., no matter how much tim@ has to run that program before

4 Similar conclusions have been reached previously [46,4@véver in addition to being limited to the inference
process of prediction, that earlier work is quite informalrthermore, it unknowingly disputes well-established Itssu

in engineering. For example, the claim in [46] that “a predittconcerning the narrator’s future ... cannot ... account
for the dfect of the narrator’s learning that prediction” is refutgddulaptive control theory and Bellman’s equations.
Similarly, those with training in computer science will recie statements (A3), (A4), and the notion of “structurally
identical predictors” in [47] as formally meaningless.
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making its answer at time It is also true no matter how much time there is betwgemdt. It
is even true if the program with whidd is initialized explicitly gives the correct answer to the
guestion.

Similar results hold ift” < t. In particular, such results hold @ is an observation device
that we wish to configure so that at timhé correctly completes an observation process saying
whether the universe was outsidetdfat timet’. We can even have be earlier than the time
whenC is set up. In this cas&; is a recording system that contains information about tts¢ pa
and we wish to query it about whether the universe was outsidie att’. See [26] for further
discussion of these points.

While these limitations are unavoidable, often they are al@vant, in that we are not inter-
ested in whether a device infers an arbitrary set of funstitmstead, often we are interested in
whether a devices infers some specified subset of all fumtidrop. 1(i) addresses that situation.
In particular, given our assumption that any function dyemust contain at least two values in
its range, it immediately implies the following:

Corollary 1:
i) Let {I'}} be a set of functions with domals andW c U. If Vi, T(U) = [(W),
then there is a device that infelis}.
if) For any functior” with domainU there is a device that infefs

Another implication of Prop. 1(i) is the following:

Corollary 2: Let C = (X,Y) be a device ovet) where the partition induced bX is a fine-
graining of the partition induced by. Then|X(U)| > 2 iff there is a function tha infers.

Prop. 1(ii) tells us that any inference deviCecan be “thwarted” by an associated function.
However it does not forbid the possibility of some secondaethat can infer that function that
thwartsC. To analyze issues of this sort, and more generally to aadheinference relationships
within sets of multiple functions and multiple devices, viarswith the following definition:

Definition 4: Two devices Xy, Y1) and (X2, Yz) are(setup) distinguishableiff V x;, Xo, Jue U
S.t. X (U) = Xg, Xo(U) = Xo.

No device is distinguishable from itself. Distinguishaiis non-transitive in general. Intu-
itively, having two devices be distinguishable means tloatatter how the first device is set up,
it is always possible to set up the second one in an arbiteslyién; the setting up of the first
device does not preclude any options for setting up the skope.

By choosing the negation proldgy € B) = —y we see that no device can weakly infer itself.
We also have the following:

Theorem 1: No two distinguishable devices can weakly infer each other.

Thm. 1 says that no matter how clever we are in designing agbanference devices, so long
as they are distinguishable from each another, one of thest thwart the other, providing a
function that the other device cannot infer. Whereas the ssibdity result of Prop. 1(ii) relies
on constructing a special functid@hmatched taC, the implications of Thm. 1 are broader, in that
they establish that a whole class of functions cannot berideby C (namely the conclusion
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functions of devices that are distinguishable fr@rand also can infe€). It is important to
note that the distinguishability condition is crucial torithl; mutual weak inference can occur
between non-distinguishable devices.

Example 5: Consider a rectagular grid of particle pairs, each pair isting of a yellow particle
and a purple particle. Say that all particles can either lixe @gp or spin down. Write the spin
of the purple particle at grid locatiom, () assP(i, j), and the spin of the yellow particle there as
(i, j).

Such a grid is a sely consisting of all quadruple§, j, sP(i, j), 9(, j)}. Assume there are
at least twa values, and at least one purple spin is up and at least onewis. dden we can
define a “purple inference devic€® by XP(i, j, sP(i, j), &(i, j)) = i andYP(i, |, sP(, j), 9(, ])) =
sP(i, j). Similarly, a “yellow inference device” can be defined ¥(i, j, s°(i, j), ¢(i, j)) = j and
YY(i, j, sP(, j), &, j)) £ <(i, j) (assuming there are at least tvys and at least one yellow
particle is spin up and at least one is spin down).

These two devices are distinguishable. In additioh, > CY if there is somé’ such that
sP(i’, j) = 9(i’, j) for all j, and also somé€’ such thatsP(i”, j) = —</(i”, j) for all j. In such
a situation we can set up the purple device with a vaill)el{at guarantees that its conclusion
correctly answers the question, “Dog&gpoint up?”. Similarly, we can set it up with a value that
guarantees that its conclusion correctly answers the igne8boess’ point down?”.

However if there is such ah andi”, then clearly there cannot also be both a valuand a
value j” that the yellow inference device can use to answer whetheoints up and whether
sP points down, respectively. This impossibility holds retjass of the size of the grid and the
particular pattern of yellow and purple particles on thelgfihm. 1 generalizes this impossibility
result.

As a general comment, the definition of what it means for aadet inferI" can be re-
expressed in terms of the pre-images)inf I', {I1(y) : y e I'(U)}.® Now in this paper we only
consider weak inference dfs that are functions. So none of those pre-imageF oftersect
the others; they comprise a partitiondf However more generally, one might be interested in
inference ofl" when some of the pre-imagesiohave non-empty intersection with one another.
For example, one might wish to observe if some physical kégigs in the range [A0], the
range [520], or the range [130]. Formally, the generalization to overlapping pre-iesa@f
I" arises by allowind" to be a correspondence rather than a function. The geredrafizof the
formalism to explicitly accomodate such corresponderebgsyond the scope of this paper. Note
though that since devices are pairs of functions, that gdimation is not relevant for much of
the analysis concerning the inference of one device by anoth

4. Turing machines, Universal Turing machines, and infereoe

There are several connections between inference andg@salbmputer science [49]. In this
section we introduce some elementary concepts for exgldhiose connections.

5 Writing it out, if C infersT,, then for all¥ y € I'(U), 3 x € X(U) such that K-1(x) n Y-1(1)] = [X"1(x) nT1()].
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4.1. Turing machines and inference

Consider a deterministic Turing Machine (TM) and write itgeirnal state at iteratiarasg(t),
with the state of its tape then being writtentg). So the operation of the TM on a particular
initial value of its tapen(tg) produces an infinite sequengdsty), g(to), h(to + 1), g(to + 1), .. .}. (If
g(t) is the halt state, then for completeness we dgfi@ = g(t), h(t’) = h(t) Yt > t.) Which
such sequence the TM executes is determined by the Wig)e(assuming a default value for
9(to))-

Next takeU to be the set of worldlines consistent with the laws of phygicour universe (and
no other worldlines). Hypothesize that it is consistentwitose laws of physics to have some
particular TMT be physically instantiated in our universe, with iteratmmbert corresponding
to time in some particular reference frame. Then which secgi@ actually executes can be
cast as a projection function of the worldlimes U. (Recall that worldlines extend across all
time.) Accordingly we can identify any as a functiorl” with domainU. The set of all possible
sequences of that can occur in our universe is simply a set of functibns

To be more precise, fit, and letH™ be the set of all possible initial (tim) values of
T’s tape. DefineM" as the map by whicli takesh(ty) € HT to the associated infinite sequence
{h(to), o(to), h(to+1), o(to+1),...}. MT can be viewed as definifiy Equivalently, we can express
T as a function ovet, I'": TT projects every € U in which T has initial tape state € HT to
MT(h). MT andI'™ have the same range (namely the set of all sequence that generate),
but different domainsH™ andU, respectively).

Now construct an inference devi& = (X', YT) whereXT(U) = {(h,f) : he HT,f €
m(I'T)}. Write the two components of any valdé (u) asXT (u) andX] (u), whereX (u) is defined

to be the valudi(tp) for the TM T when the worldline igi. 80xg “initializes” the TM. Note that
the second component &, XT, mapsu onto a space of functions over (namely, the space
n()). Finally, defineY™ : u — 1 iff X[ (W[MT (X[ (u))] = 1.

If X7 is set up to be a particular initial state ®fs tape, together with a particular probe
concerning the resultant sequence of internal and tapesstaen for any the conclusiory™ (u)
is the actual value of that probe for the sequence of interndlitape states specifiedunSince
probes are simply a way to imbue the conclusion of the devittesemantic meaning (recall Ex.
3in Sec. 2), this means we can vi€@as equivalent td . In particular,C" infers the TM, i.e.,
C'>T1T.

We can generalize this example, to identify inference devio general as analogs of TM’s,
with inference being the analog of TM-style computationl. &lthe impossibility results pre-
sented above apply to these analogs of TM’s. To illustrate Brop. 1(ii) can be taken to mean
that for any such inference-based analog of a TM, there isdoimction that the device can-
not “compute”. In particular, this is true for the devi€é that essentially equals the TW. In
this, Prop. 1(ii) can be viewed as the analog for inferensticds of the Halting theorem, which
concerns TM's. Moreover, this reasoning concerning plasiealizations of TM’s applies just
as well to other members of the Chomsky hierarchy besidessTiMbviding us with “halting
theorems” for those other members.

As a final comment on the relation between inference and Wé&stomputation, note that
inference by a devic€ is not a form of counter-factual “computation”. Inferenge® does not
compute the answer to a question of the form{dkiomg then{implicationg”, unless there is
somex such that faxiomg” actually holds for allu € U thatC induces by setting{(u) = x. In
particular, if in our universe there is no physical instatitin of some particular TM, then there
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is no device in our universe whose inference is computaltipaquivalent to that TM.

4.2. Universal Turing machines and inference

Now we investigate how to define an analog of Universal Tutagchines (UTM’s) for in-
ference devices. More precisely, we consider how to defirat Wwimeans for one devidg; to
emulate the inference process of another de@ic€Just like a UTM emulates the computational
process of another TM.) One natural desideratum for sucHiaitilen is that forC; to “emu-
late” C, implies, at a minimum, that; > C,. So for example, if the two devices are both being
used for prediction, this would mean th@t can correctly predict what predictid®y will make
(whether or not that prediction 1, is itself correct).

However we wan€; able to do more than infer the valuesf(u); we wantC; able to emulate
the entire mapping taking ang to the associated value(\é;)(X;l(xz)). We wantC; able to infer
what inferenceC, might make forany setup valuex, not just the inference th&, makes for
the members of a se¢2[x;1(x1)] picked out by some particulag;. This means that alt,’s must
be allowed.

One way to formalize this second desideratum is to requatQhcan inferC, using a setup
value that forces a unique, and can do so for any desireg. More precisely, consider a par-
ticular case where we waf; to emulate the inference performed 8y whenX,(u) = x,. We
can do this ifC; infersY,, while the valuex; used in that inference guarantees tkau) = x..
That guarantee means tl@t infers the conclusion df, whenC; has the setup value. Given
this interpretation of what it means f@; to emulateC, whenX;,(u) = x,, to haveC; emulate
C, in full simply means that we require that such emulation besjide for anyx, € X,(U). So
formally, we require tha¥ f € n(Y>), Vxo, 3% such thatX; = X3 = Xz = X, Y1 = f(Y2).

A second formalization takes the opposite approach, apdlates that the valug used byC,
to inferC, places no restrictions o whatsoever. Formally, this means tNdt e 7(Y>), Vo, A%,
such thatX;*(x) N X531 (x2) # @ andX; = x = Y1 = f(Y2).

In analogy with UTM’s, one might say that under the first folixetion C; specifies the “input
tape” toC, for which C; will emulateC,, and then successfully carries out that emulation, i.e.,
successfully “computes” wha&t, will produce in response to that input tape. To do this though
C, must interfere withC,, forcing it to have that desired input tape. In contrast,ambte second
formalization, there is no requirement thét force a particular value oX,. In particular, the
second formalization is obeyedVff € n(Y2), IAx; such thatX; = x; = Y; = f(Y2) while at the
same tim@ql(xl) N Xgl(xz) # @ Yxo. In such a situationC; can emulateC, using anx; that
doesn't reflect hov, is set up. (Physically, this usually requires that the systederlyingC,
must be coupled with the system underlyi@gat some time, so that can be made known to
Ci.)

Despite this apparent fierence, these two formalizations of our second desideragfiect
the same underlying mathematical structure. To see thisieda composite devidg’ = (X', Y’)
whereX’ : u — (Xy(u), X2(u)) andY’ = Y;. Then under our second formalization of “emulation”,
for C; to emulateC, implies that¥f € n(Y,), ¥x, 3’ such thatX’~}(x') n X;1(x;) # @ and
X =X = X = %Y = f(Yz). HoweverX'}(x) n X;}(x) # @ means thak’ = X =
Xz = Xo, by definition ofX’. So this second formalization of what it means@rto emulateC,
stipulates a relation betwe&H andC, that is identical to the relation betwe&a andC, under
the first formalization. In this sense, our second forméilirareduces to our first. Accordingly,
we concentrate on the first formalization, and make theviotig definition:
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Definition 5: A device (X3, Y1) strongly infers a device Ko, Y>) iff V f € x(Y2) and allxz, 3 x;
such thab(]_ =X = Xo=X%,Y1 = f(Yz)

If (X1, Y1) strongly infers Ko, Y») we write (X1, Y1) > (X2, Y»).® See App. B for a discussion of
how minimal the definition of strong inference really is.

Say we have a TM that can emulate another TV, e.g.,T1 is a UTM. This means thaft;
can calculate anything th@ can. The analogous property holds for strong and weak inéexe
In addition, like UTM-style emulation (but unlike weak iménce), strong inference is transitive.
These results are formalized as follows:

Theorem 2: Let C,, C, andC3 be a set of inference devices owgrandI” a function overU.
Then:

i)Cy > CrandC, >T' = Cy >T.

ii) Cy > Cy,andC; > C3 = C; > Cas.

Strong inference implies weak inference, i@,,> C, = C; > C,. We also have the follow-
ing strong inference analogs of Prop. 1(ii) and Coroll. lifhiconcerns weak inference):

Proposition 2: Let C, be a device oved.
i) There is a devic€, such thaC; » C,.
i) Say thatv x, |X51(x1)| > 2. Then there is a devid@, such thatC, > C;.

Recall that the Halting problem concerns whether there i§®IT with the following prop-
erty: Given any TMT’ and associated input strirg) if T’ ands’ are encoded as an input string
to T, thenT always correctly decides wheth&f halts on inputs’. The Halting theorem then
says that there can be no such UTMiIntuitively, Prop. 2(i) can be viewed as an analog of this
theorem, in the context of inference. (See also Prop. 7 below

In general we are not interested in whether a device canglyrinfer an arbitrary set of other
devices, but rather with the strong inference relatiorskimong the members of a particular
set of devices. Just like with weak inference, no device ¢eongly infer itself. This can be
generalized to concern a set of multiple devices as follows:

Theorem 3: No two devices can strongly infer each other.

Note that Thm. 3 does not require distinguishability, intcast to Thm. 1.
5. Inference Complexity

In computer science, given a TM the Kolmogorov complexity of an output striisgs defined
as the length of the smallest input strisighat when input td producessas output. To construct
our inference device analog of this, we need to define thegtlénof an input region of an
inference devic€. To do this, we assume we are given a meadureverU, and for simplicity

6 Note that there are only two probestf, the identity probef (y2) = y» and the negation probé(y,) = —y». Indicate
those two probes b = 1 andf = -1, respectively. Then we can expre§s= x3 = Xz = X, Y1 = f(Y2) in set-theoretic

terms, aX;1(x1) € X51(x2) N (Y1Y2)7X(f), whereY1Y; is the functionu € U — Y1(u)Y2(u).

17



restrict attention to function& over U with countable range. Then we define tleagth of
g€ GU) as -In[f du G™Y(g)], i.e., the negative logarithm of the volume of alk U such that
G(u) = g. We write this length as#:(g), or just.Z(g) for short.’

Definition 6: Let C be a device anfl a function ovetd whereX(U) andI’(U) are countable and
C > T. Theinference complexityof I" with respect tcC is defined as

%(F | C) z Z minX:X=X$Y=f(r)[$(X)]'

fen()

The inference complexity of with respect toC is the sum of a set of “complexities”, one
for each probe of’, f. Loosely speaking, each of those complexities is the mihamzount

of Shannon information that must be imposedCis setup function in order to ensure that
correctly concludes what valuehas. In particular, if” corresponds to a potential future state of
some systens external toC, then%(I" | C) is a measure of how flicult it is for C to predict
that future state 0. Loosely speaking, the more sensitively that future stapgedds on current
conditions, the more complex is the computation of thatriusiate.

Example 6: Consider a conventional real-world computer, with a sutiseof its RAM set aside
to contain the program it will run, and a separate subsectb@mside to contain the conclusion
that the program will produce. Say the total number of bitsh@ program subsection of the
RAM is 2¢ + k for some integek. Refer to any set of‘2+ k bits as a “complete string”; the set of
all complete strings is the set of all possible bit stringthie program subsection of the RAM.

Let =¥ be the set of all bit strings consisting of at leask bits such that the first bits are a
binary encoding of the total number of bits srbeyond those firsk bits. So every element of
¥X can be read into the beginning of the RAM’s program subsecfor anys € = define an
associated “partial string” as the set of all complete ggiwhose first bits are Intuitively, for
any such complete string, all of its bits beyosdre “wild cards”. (Such partial strings are just
the “files” of real-world operating systems.) With some ababterminology, when we writes’
we will sometimes actually mean the partial string thapecifies.

We can identify a particular program input to the computeswash a partial string in its pro-
gram subsection. If we append certain bits to suck @nodifying the contents of the fir&thits
appropriately) to get a new longer program partial strgighe set of complete strings consistent
with ' is a proper subset of the set of complete strings consistiémtsw

Define the length of a partial strirgps the negative of the logarithm of the number of complete
strings that have at their beginning, minuk. This matches the usual definition of the length of a
string used in computer science. In particulasg ifontainsn more bits than does then there are
2n times as many complete strings consistent \8i#ls there are consistent wish Accordingly,
if we take logarithms to have base 2, the lengtis'afquals the length dof, plusn.

Now view our physical computer as an inference device, Witthe Cartesian product of the
set of all possible bit strings in the RAM of the computer tibhge with some countable-valued
variables concerning the world outside of the computereRief the components of anye U

7f fdy 1 = o0, then we instead work with fierences in logarithms of volumes, evaluated under an apptepiinit
of du that takesf du 1 — oo. For example, we might work with suchftirences wheb is taken to be a box whose size
goes to infinity. This is just the usual physics trick for deglwith infinite volumes.
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specifying the bit string in the program subsection of theMR#s the “program subsection of,
and similarly for the “conclusion subsection st

For the computer to be an inference device means that théusiort subsection afi consists
of a single bit, i.e..Y maps allu € U to the (bit) value of the conclusion subsection of the
computer’'s RAM as specified hy For allu € U, haveX(u) be the bit string at the beginning of
the program subsection afwhose length is given by the firktbits of that program subsection
of u. Sox is a partial string of the RAM’s program subsection. In gahethere are many sets
each consisting of multiple € U that have the same image undeéri.e., there are many such
that X-1(x) consists of multiple elements. If we adopt the uniform poreasurely, then.Z(x)
is just the negative logarithm of the number of such elememd (), i.e., the length of the
partial stringx in the program subsection of the computer's RAM.

Now say we want our computer to make a prediction concerriegvalue ofl(U), one of
the variables associated with the world outside of the cderpAs usual, we interpret this to
mean that for any € I'(U), there is some partial string we can read into the compmupedgram
subsection that contains enough information concerhiagd the state of the world so that the
computer’s conclusion will correctly say whethigfu) = y. The inference complexity of that
prediction ofT is the sum, over all such probé=f I', of the length of the shortest partial string
in the computer’s program subsection that cause it to ctiyreonclude the value of.

The min overx's in Def. 6 is a direct analog of the min in the definition of Kagorov
complexity (there the min is over those strings that whemiiip a particular UTM result in the
desired output string). A natural modification to Def. 6 igémove the min by considering all
X's that causé’ = f(I'), not just of one of them:

Z =In [ H (Ux:X=x=Y=f(l")x_1(X)) ]

fen(D)

>

¢(T| C)

e—j’(x)

bl

—In [
fen(l) x:X=x=Y=f(I)

where the equality follows from the fact that for amyx’ # x, X"3(x) n X"%(x) = @. The
argument of the In in this modified version of inference caewjty has a direct analog in TM
theory: The sum, over all input stringsto a UTM that generate a desired output strg\gof
29, wheren(s) is the bit length of.

We now bound how much more complex a function can appeér tthan toC, if C; can
strongly inferCs.

Theorem 4:LetC; andC, be two devices anf a function ovetd wherel'(U) is finite,C; > C,,
andC, >T'. Then

CT|CY—-F[ICo) < [T(U) Max,MiNy x,-x=X=x.Y:=Y,[-Z (X1) — L (X)].

Note that sinceZ(x) —-Z (%) = In[ i{gf;] the bound in Thm. 4 is independent of the units with
1 X1

which one measures volume h (Cf. footnote 7.) Furthermore, recall thdt = x; = X; =
X2, Y1 = Yo iff X71(x0) € X531 (%) N (Y1Y2)~%(1). (Cf. footnote 6.) Accordingly, for allx, Xo)

-1
pairs arising in the bound in Thm. 1&3 > 1. So the bound in Thm. 4 is always non-negative.
1
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An important result in the theory of UTM’s is an upper boundtbe diterence between the
Kolmogorov complexity of a string using by a particular UTM and its complexity if using a
different UTM, T,. This bound is independent of the computation to be perfdfraad can be
viewed as the Kolmogorov complexity @f emulatingT.

The bound in Thm. 4 is the analog of this UTM result, for infere devices. In particular, the
bound in Thm. 4 is independent of all aspectd axcept the cardinality of (U). Intuitively,
the bound igI'(U)| times the worst-case amount of “computational work” tBathas to do to
“emulate”C,’s behavior for some particular value xf.

6. Realities and copies of devices

In this section the discussion is broadened to allow setsasfynfunctions to be inferred and
/ or inference devices. Some of the philosophical implicatiof the ensuing results are then
discussed.

6.1. Formal results

To analyze relationships among multiple devices and fonsti define aeality as a pair
(U; {F,})) whereU is a space andF,} is a (perhaps uncountable) non-empty set of functions
all having domainJ. We will sometimes say thall is thedomain of the reality. We are par-
ticularly interested irdevice realitiesin which some of the functions are binary-valued, and we
wish to pair each of those functions uniquely with some ofdtier functions. Such realities can
be written as the triplel(; {(X., Yo)}; {Is}) = (U;{C,}; {I's}) where{C,} is a set of devices over
U and({I's} a set of functions ovel.

Define auniversal deviceas any device in a reality that can strongly inpfer all othevickes
and weakly infer all functions in that reality. Thm. 3 mealattno reality can contain more than
one universal device. So in particular, if a reality consaahleast one universal device, then it has
a unique natural choice for an inference complexity measwamely the inference complexity
with respect to its (unique) universal device. (This castsavith Kolmogorov complexity, which
depends on the arbitrary choice of what UTM to use.)

Itis useful to define theeduced form of a reality U; {F4}) as the range ag)¢ F4. Expanding,
this equalsuyeu[ X, F(u)], the union over alu of the tuples formed by a Cartesian product,
running over allp of the valuesF,4(u). In particular, the reduced form of a device reality is the
set of all tuples (f1, y1],[X2,¥2l, ... ;¥1,72,...) for which 3 u € U such that simultaneously
X1(U) = X1, Y1(U) = Y1, Xo(U) = X2, Y2(U) = Va2, ... ; T1(U) = y1,T2(U) = 2, . . ..

As an example, takd to be the set of all worldlines consistent with the laws of giby (and
no other worldlines). So for example, if one wants to consalaniverse in which the laws of
physics are time-reversible and deterministic, then weaireghat no two distinct members of
U can intersect. Similarly, properties like time-trangatinvariance can be imposed bh as
can more elaborate laws involving physical constants. Whicth particular properties &f are
imposed depends on what the laws of physics are.

Next, have{T's} be a set of physical characteristics of the universe, eaatacteristic perhaps
defined in terms of the values of one or more physical var&abtemultiple locations aridr
multiple times. Finally, havéC,} be all prediction observation systems concerning the universe
that all scientists might ever be involved in.

20



This example is the conventional way to interpret our ursgeas a reality. In this example the
laws of physics are embodiedlih The implications of those laws for the relationships amidweg
scientist devicefC,} and the other characteristics of the univeig is embodied in the reduced
form of the reality. Viewing the universe this way, it is the U, specifying the universe’s state
for all time, that has “physical meaning”. The reduced fonstéad is a logical implication of the
laws of the universe. In particular, our universe’picks out the tupleX, C,(u)] x [XzIs(U)]
from the reduced form of the reality.

As an alternative we can view the reduced form of the reaBtgmcapsulating the “physical
meaning” of the universe. In this alternativedoes not have any physical meaning. It is only
the relationships among the inferences ahotitat one might want to make and the devices
with which to try to make those inferences that has physioghmmg. One could completely
change the spadg and the functions defined over it, but if the associated reddorm of the
reality does not change, then there is no way that the deinctmt reality, when considering
the functions in that reality, can tell that they are now dediover a dierentU. In this view, the
laws of physics i.e., a choice for the 4&f are simply a calculational shortcut for encapsulating
patterns in the reduced form of the reality. It is a particitatantiation of those patterns that has
physical meaning, not some particular elemesatU.

Given a reality U; {(X1, Y1), (X2, Y2),...}), we say that a pair of devices in it apairwise
distinguishable if they are distinguishable. We say thag\aa (X;, Y;) in that reality isoutside
distinguishableiff ¥ x; € Xj(U) and allx’; in the range O®jii Xj, there is au € U such that
simultaneouslyX;(u) = x andX;(u) = x| Vj # i. We say that the reality as a wholengitually
(setup) distinguishableiff V x; € Xi(U), %2 € Xo(U),... J u € U s.t. X3(u) = xg, Xo(u) =
X2yt

Proposition 3:
i) There exist realities(; Cy, C,, C3) where each pair of devices is setup distinguishable
andC; > C, > C3 > C;y.
i) There exists no realityf; {C; : i € .4/ C N}) where the devices are mutually
distinguishable and for some integelC; > C, > ... > C, > C;.
iii) There exists no realityd; {C; : i € .4 C N}) where for some integer, C; > C; >
...>Ch> Cy.

Consider a reality with a countable set of devi¢€g. There are many ways to view such
a reality as a graph, for example by having each node be aal@hide the edges between
the nodes concern distinguishability of the associatedcdsyor concern whether one weakly
infers the other, etc. There are restrictions on what graptisose various sorts can exist. As an
example, given a countable reality, define an associatedtdul graph by identifying each device
with a separate node in the graph, and by identifying eactiogiship of the fornC; > C; with
a directed edge going from nodléo nodej. We call this thestrong inference graph of the
reality.

Thm. 3 means that a universal device in a reality must be anod¢ of the strong inference
graph of the reality. Applying Th. 3 again shows that thersgrimference graph of a reality with
a universal device must contain exactly one root. In addjtiy Thm. 2(ii), we know that every
node in a reality’s strong inference graph has edges thatieactly to every one of its successor
nodes (whether or not there is a universal device in thetygaly Prop. 3(iii) we also know that
a reality’s strong inference graph is acyclic. This latsatfestablishes the following:
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Proposition 4: Let D be a finite subset of the devices in a reality, where the stiofegence
graph of the reality is weakly connected oW&r Say that any pair of distinct devices hthat
are not connected by an edge of the strong inference grageane distinguishable.

Then the strong inference graph of the reality has one andamnd root oveD.

Results of this sort mean there are unavoidable asymmétridge strong inference graphs of
realities. These asymmetries provide a preferred dinectictrong inference in realities, akin to
the preferred direction in time provided by the second lathefmodynamics.

Note that even if a devic€; can strongly infer all other devicesi.; in a reality, it may
not be able to infer thensimultaneously (strongly or weakly). For example, defide: u —
(Y2(u), Y3(u), . ..). Then the fact that, is a universal device does not mean thate #(I') 3 x; :

Y, = f(I). See the discussion in [26] on “omniscient devices” for enan this point.

We now define what it means for two devices to operate in articlEmmanner:

Definition 7: Let U andU be two (perhaps identical) sets. L@t be a device in a reality with
domainU. Let R; be the relation betweeX, andY; specified by the reduced form of that reality,
i.e., x;Ryy; iff the pair &, y;) occurs in some tuple in the reduced form of the reality. Birtyi
let R, be the relation betweexy, andY, for some separate device in the reduced form of a reality
having domairlJ.

Then we say thaE; mimics C, iff there is an injectionpx : X2(U) — X1(U) and a bijection
Py . Yz(L]) Cd Y]_(U), such that fo Xz, Yo, XoR2Y, & px(Xz)R]_py(yz). If both C; mimicsC, and
vice-versa, we say th&; andC, arecopiesof each other.

Note that becauspy in Def. 7 may not be surjective, one device may mimic multipther
devices. (Surjectivity gby simply reflects the fact that since we're considering deyji¥gU) =
Y»(U) = B.) The relation of one device mimicing another is reflexivd tmansitive. The relation
of two devices being copies is an equivalence relation.

Intuitively, when expressed as devices, two physical systare copies if they follow the same
inference algorithm witlpx andpy translating between those systems. In particular, sayliyrea
contains two separate physical computers that are inferdecices. If those devices are copies
of each other, then they form the same conclusion for the saine of their setup function, i.e.,
they perform the same computation for the same input.

As another example, say that the states of some physica&nsygat a particular time and
shortly thereafter at+ § are identified as the setup and conclusion values of a d€yida other
words,C; is given by the functionsX;(u), Y1(u)) = (S(u), S(Us)). In addition, letRs be the
relation betweerX; andY; specified by the reduced form of the reality containing theteayn.
Say that the time-translation 6, given by the two functionS(uy) andS(uy ), also obeys the
relationRs. Then the pair of functionsX;(u), Yo(u)) = (S(uy), S(ur+s)) is another device that
is copy ofC;. So for example, the same physical computer at two sepaa#te g moments is
two separate devices, devices that are copies of each affsenning they have the same set of
allowed computations.

Say that an inference devi€® is being used for observation a@d mimicsC,. The fact that
C; mimicsC, does not imply tha€; can emulate the observation ti@tmakes of some outside
functionT. The mimicry property only relatés; andC,, with no concern for third relationships
with any third function. (This is why for one device to “emtdaanother is defined in terms of
strong inference rather than in terms of mimicry.)

Next for future use we note the following obvious fact:
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Lemma 1: Let K; be the set of reduced forms of all device realities. Ketbe the set of all
setsk with the following propertyk can be written a$(>X e (S, t,) X xﬁe%vr) r e R
for some associatedﬂ% andR such that for alke, Uit!, = B and| U, S| > 2, wh|Ie for all
ﬁ € %’ | Ur > 2. ThenK; = K. In particular, ank € K; is the reduced form of a reality
f where for alle € &/,8 € #,u € U there is some associated= R such that
S|multaneously<(,(u) S, Yo(U) = t,, andIg(u) =

Fix a counting numbemand a set om cardinalities{Q; : i = 1,... m}. Consider the sa¥l of all
realities comprisingn functions whose ranges have the cardinalities: i = 1,...m}. Say we

ask whether there is a reality M whose functions have some specified relationships with one
another.

Lemma 1 allows us to transform this question into a congtigatisfaction problem over an
associated space of tuples. The set of “specified relatipsisgets transformed into a set of
simultaneous constraints over the associated space ektufpthe precise type of constraint sat-
isfaction problem (integer-valued, real-valued, etcdasermined by the space of tuples under
consideration, i.e., by the cardinalities of the imageseffinctions that constitute the reality.

Often though we can use Lemma 1 more directly to establishitsesoncerning realities,
without invoking any techniques for solving constrainisfaction problems. An example occurs
in the proof of the following result:

Proposition 5: Let C; be a copy ofC,.
i) It is possible tha€; andC, are distinguishable ar@; > C,, even for finiteX; (U), Xa(U).
i) Itis possible thaC; > C,, but only if X;(U) andX,(U) are both infinite.

6.2. Philosophical implications

Return now to the case wheté¢ is a set of laws of physics (i.e., the set of all worldlines
consistent with a set of such laws). The results of this sttliseprovide general restrictions that
must relate any devices in such a universe, regardless afetfaled nature of the laws of that
universe. In particular, these results would have to be @they all universes in a multiverse [27—
29].

Accordingly, it is interesting to consider these resultgfran informal philosophical perspec-
tive. Say we have a devidg in a reality that is outside distinguishable. Such a deviae loe
viewed as having “free will”, in that the way the other dei@ae set up does not restrict how
C can be set up. Under this interpretation, Thm. 1 means tiabiflevices both have free will,
then they cannot predig¢tecall/ observe each other with guaranteed complete accuracylA rea
ity can have at most one of its devices that has free will ancbecadict/ recall/ observe the other
devices in that reality with guaranteed complete accui&sisnilar conclusions hold for whether
the devices can “control” each other; see Sec. 7 below.)

Thm. 3 then goes further and considers devices that can @mredaeh other. It shows that
independent of concerns of free will, no two devices cantmglly emulate each other. (In other
words, no reality can have more than one universal deviaaeB/hat tongue in cheek, taken
together, these results could be called a “monotheism ¢neor

Now suppose that the domain of a reality is a set of worldliee®nding across time, and
consider “physical” devices that are identified with syséegmolving in time. (See discussion
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just after Def. 7.) Prop. 5 tells us that any universal demicsst be infinite (have infinitX(U)) if
there are other devices in the reality that are copies ofriceSthe time-translation of a physical
device is a copy of that device, this means any physical detiat is ever universal must be
infinite. In addition, the impossibility of multiple univeal devices in a reality means that if any
physical device is universal, it can only be so at one mometitrie. (Its time-translation cannot
be universal.) Again somewhat tongue in cheek, taken tegétiis second set of results could
be called an “intelligent design theorem”. (See Sec. 7 flated limitations concerning devices
that are used to control one another.)

In addition to the questions addressed by the monotheisniraeligent design theorems,
there are many other semi-philosophical questions one shrofathe form “Can there be a
reality with the following properties?”. As mentioned alkg.emma 1 can be used to reduce
all such questions to a constraint satisfaction problererg@lly involving infinite-dimensional
spaces. In other words, much of philosophy can be reducenhtraint satisfaction problems.

As a final comment, while it is most straight-forward to apfig results of this subsection
to physical universes, they can be applied more widely. htiqadar, somewhat speculatively,
one can consider applying them to mathematical logic itéelsuch an application eache U
would be a (perhaps infinite) string over some alphabet. kamgle,U might be defined as
the set of all strings that are “true” under some encodingtthaslates a string into axioms and
associated logical implications. Then an inference dewigeld be a (perhaps fallible) theorem-
proving algorithm, embodied withibd itself. The results of this subsection would then concern
the relation among such theorem-proving algorithms.

7. Control devices

In weak inference there is no causal arrow frbno X. In fact, the only causal arrow goes
from the device to the function being inferred (in tiad value forces something abdus value)
rather than vice-versa. This reflects what it means for ugtatibe to set up a device so thatitis
guaranteed correct in its predictippbservatiofmemory.

This causal arrow from the device to the function does notmitkat the device controls the
function. The reason is tha{’'s value doesn't sel’s value, but only forces that value to be
consistent withy. This motivates the following definition:

Definition 8: A deviceC controls a functionT overU iff YV f € n('), Yb € B, 3x such that
X=x=Y = f([') =b.Csemi-controlsT iff Yy e T(U), A xsuchthalX = x =T = y.

Semi-control has nothing to do with the conclusion functioof the device; that function
enters when one strengthens the definition of semi-cortrgpét the definition of control. To see
this, note thatC semi-controld” iff V f € #([), Ax such thatX = x = f(I') = 1. However if
X = xforcesf(I') = 1, then for any probd’ # f, X = xforcesf’(I') = 0. SoC semi-controls
riffv f e n(l), ¥b € B, Ax such thatX = x = f(I') = b. This is just the definition of control,
without the extra condition that controls imposes on thei@ailf Y. We say that one devidg
(semi-) controls another if it (semi-) controls the conauasfunction of that second device.

The weakness of the semi-control concept is that it stipglabthing concerning whethér
“knows” (infers) that some valug forcesI into the statef ~%(b). In this, it doesn’t capture the
intuitive notion of “control”. Accordingly, in the formatiation of Def. 8, we stipulate that you
do not fully control a function if you force it to have some walbut don’t know what that value
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is.

If the partition induced by is a refinement of the partition induced BY50], and in particular
if itis a fine-graining of that partition, the@ semi-controld". Note also that if"is binary-valued,
then havingC semi-controll’ means there is both ansuch thaiX(u) = x = u € I'’}(1) and an
X' such thatX(u) = X' = u e I'"'}(-1). In the language of formal epistemology [42,43,45,44],
this means thaX~%(x) and X~1(x’) are the values of a “knowledge function” evaluated for two
arguments: the subsgt'(1) and the subsdt(-1), respectively. (See Sec. 9 below.)

Clearly control implies semi-control. In addition, if on@wce C; strongly infers another
deviceC,, thenC; semi-controlsX,, though it may not semi-contrdf,. Control implies weak
inference, i.e., iC; controls a functio” thenC, > I'. The logical converse need not hold though.

Since control implies weak inference, all impossibilitgutts concerning weak inference also
apply to control. In particular, no device can control ifsahd no two distinguishable devices
can control each other. In fact we can make the followingngfen statement, which essentially
states that if two partitions are refinements of each angtiey must be identical:

Theorem 5:If two devicesC; andC, simultaneously semi-control one another’s setup funstion
then the partitions induced b¥; andX; are identical.

Intuitively, Thm. 5 means that if two devices simultanegustmi-control one another’s setup
functions, then those setup functions are identical, upétedoeling of their ranges. This provides
the following results contrasting with Thm. 1 and Thm. 3;

Corollary 3: LetC; andC; be two devices that simultaneously semi-control one amstbetup
functions.

i)C1>C2";>Cz>C1.

i) Neither device strongly infers the other.

iii) Neither device controls the other’s setup function.

8. Stochastic devices

In the analysis above there is no probability meagtoserU, and therefore functions over
are deterministic. There are several ways to extend thgsinab incorporate such a probability
measure, so that functions owdrbecome random variables. One starts as follows:

Definition 9: Let P(u € U) be a probability measuré, a function with domairlJ and finite
range, and € [0.0,1.0]. Then we say that a devic,(Y) (weakly) infersI” with (covariance)
accuracye iff
2 tenry MX[Ep(Y () | X)] _
[(AC]

As an example, iP is nowhere 0 an@ weakly infersl’, thenC infersT" with accuracy 1.0°

8 A subtlety with the definition of an inference devices arises stochastic setting: we can either require thae sur-
jective, as in Def. 1, or instead require thabe stochastically surjective Yy € |mathbbB, 3Ju with non-zero probability
density such tha¥(u) = y. The distinction between requiring surjectivity and s@sfic surjectivity ofY will not arise
here.
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Note that we daot define inference accuracy in terms of mutual informatiorresgions like
M(Y, f(I) | X = ). To see why consider the case whéris a probe of” that equals 1ffi I = v,
and letx be a value wherX = x = Y = —f(I). In this case the mutual information conditioned
on x betweenY and f (I') would be maximal. However the device would have probatdéro of
correctly answering the question, “ddefave value/?”. It would either say “yes” and in fadt
does not equay, or it would say “no” and in facE’ does equaj.

This is an illustration of the fact that the definition of idace assigns semantic content to
Y = 1: it means that the device's answer is “yes”. In contraggrination theoretic quantities
like mutual information are (in)famous for not involvingreantic content.

While inference is a semantic concept, distinguishabitityat, which motivates the following
definition:

Definition 10: Let P(u € U) be a probability measure, arde [0.0, 1.0]. Then we say that the
(setup) mutual information-distinguishability of two device 3, Y1) and (X2, Y2) is

_ Mp(Xy, X2)
Hp(X1) + Hp(X2)

Mutual-information distinguishability is bounded betwe&and 1.

Note that variables can be distinguishable in the sense bfDsven if their mutual informa-
tion distinguishability is less than 1. (They can be paltiabrrelated but still distinguishable in
the sense of Def. 4.) This motivates the following altereatiefinition, for simplicity phrased
for countableX(U):

Definition 11: Let P(u € U) be a probability measure, arde [0.0, 1.0]. Then we say that the
counting distinguishability of two device Ky, Y1) and Xz, Y2) is

_ le,xz s U X (U)=xg, X (U)=X2 1
[X1(U)I x [X2(U)

There are many analogs of Thm. 1 that relate quantities tikeatcuracy with which device
C; infers deviceC,, the accuracy with whicl€, infers C;, how distinguishable they are, the
entropies of the random variabl¥gs andX,, etc. To present perhaps the simplest such example,
defineH as the four-dimensional hypercul@ 1})*, k(2) as the map taking ang € H to z; +
4 — 7, — 73, M(2) as the map taking arye H to (z — 1), andn(2) as the map taking arnge H
to (z3 — z1).

Proposition 6: Let P be a probability measure over, andC, andC, two devices whose mutual-
information distinguishability is 1, wher¥;(U) = X,(U) = B. DefineP(X; = -1) = @ and
P(X; = —1) = B. Say thatC; infers C, with accuracye;, while C, infers C, with accuracye,.
Then

e162 < MaXen | eBk(2)]? + ak(2M(2) + BK(DN(2) + M(IN(2) |.
In particular, ifa = g = 1/2, then

MaXen | (z1 — 22)? — (22 — 23)? |
4

€6 <

= 1/4,
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The maximum forr = 8 = 1/2 can occur in several ways. One is wign= 1, andz, z3, 4 all
equal 0. At these values, both devices have an inferenceaaycaf 32 at inferring each other.
Each device achieves that accuracy by perfectly inferrimg probe of the other device, while
performing randomly for the remaining probe.

Similarly, say that we have a volume measdieoverU, as in Sec. 5, together with a proba-
bility measureP overU. Then we can modify the definition of the lengthyfo be-H(U | x),
the negative of the Shannon entropy under pdioof P(u | X). If as in statistical physic® is
proportional todu across the support &, thenP(u | X) o< du(u | X), and these two definitions of
the length ofx are the same.

There are several ways to combine this new definition of lemgth the concept of inference
accuracy to define a stochastic analog of inference conplériparticular, we can define the
stochastic inference complexityof a functionl” with respect taC for accuracy, as

CArIC) £ ) Mingavimmee ~H(U | )]
fen(l)

assuming the sum exists fer So for example i is proportional todu across the support &
andC > T, thenfore = 1,%.(I' | C) = €(I'" | C).

One can extend this stochastic framework to include infezasf the probability of an event,
e.g., have the device say whetll" = ). Such inference contrasts with inference accuracy,
which (like non-stochastic inference) simply concerns\aaies concluding whether an event oc-
curs, e.g., concluding whethEfu) = ). One can also define stochastic analogs of (semi)control,
strong inference, etc. Such extensions are beyond the sfdipis paper.

9. Self-aware devices

We now return to scenarios wheké has no associated probability measure. We consider
devices that know what question they are trying to answeat deast “think they do”. Rather
than encode that knowledge in the conclusion function ofdéxéce, we split the conclusion
function into two parts. The value of one of those parts iplieitly) a question for the device,
and the other part is a possible associated answer. We faenthis as follows:

Definition 12: A self-awaredevice is a triple X, Y, Q) where ¥, Y) is an inference device) is
aquestionfunction with domairlJ where eacly € Q(U) is a binary function ofJ, andY ® Qs
surjective ont@® x Q(U).

Intuitively, a self-aware device is one that (potentiakppws what question it is answering in its
conclusion. WherJ = u, we interpretg = Q(u) as the question about the state of the universe
(i.e., about which subset df contains the actual) that the conclusiorY(u) is supposed to
answer. The reason we require thap Q be surjective ont® x Q(U) is so that the device is
allowed to have any conclusion for any of its questions;titls appropriate setting of(u) that
should determine what conclusion it actually makes.

So one way to view “successful inference” is the mapping gf@gr Q(U) to anx such that
X(u) = x(u) both implies that the device’s conclusion to questips correct, i.e.\Y(u) = q(u),
and also implies that the device is sure it is asking quesfidre., Q(u) = g. As an example,
say we have a computer that we want to use make a predictiah computer can be viewed as
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an inference device. In this case the questjdhat the device is addressing is specified in the
mind of the external scientist. This means that the quesiarfunction ofu (since the scientist
exists in the universe), but need not be stored directly énitference device. Accordingly, the
combination of the computer with the external scientist ahagrams the computer is a self-
aware device.

To formalize this concept, first recall that for any prabef a functionl” with domainU, f(I')
is the functionu e U — f(I'(u)). This convention arises in the following definition:

Definition 13: Let D = (X, Y, Q) be a self-aware device.
i) A functionT isintelligible to D iff V f € =('), f(I') € Q(U).
i) D isinfallible iff Yu e U, Y(u) = [Q(u)](u).

We say thaD is infallible for Q" € Q(U) iff Vg € Q’, Yu € U such thatQ(u) = q, Y(u) = g(u).
SoD is infallible iff it is infallible for Q(U) iff Y = Qiff YQ = 1. If a device is not infallible, we
say that it is fallible.

Recall thatY ® Q is supposed to represent the original conclusion functapiit‘into two
parts”. Accordingly, in keeping with the terminology usedthwweak inference, we say that a
self-aware deviceX, Y’, Q') is intelligible to a self-aware devic&(Y, Q) iff (Y’, Q') is intelli-
gible to (X, Y, Q).

Def. 13 provides the extra concepts needed to analyze imfenaith self-aware devices. Def.
13(i) means thab is able to ask what the value is of every probd'oDef. 13(ii) ensures that
whatever the questiorD is asking, it is correctly answering that question. Finalhe third part
of “successful inference” — having the device be sure it ldrasthe questiorg — arises ifD
semi-controls its question function.

These definitions are related to inference by the followesgpits:

Theorem 6: Let D41 be an infallible, self-aware device.
i) LetT" be a function intelligible td; and say thaD; semi-controlQ;. Then Ky, Y1) > T.
ii) Let D, be a device wher¥; is intelligible toD;, D; semi-controls Q;, Xz), and Qq, X2)
is surjective ontd1(U) x Xz(U). Then X, Y1) > (X2, Y2).

Thm. 6 allows us to apply results concerning weak and strofegénce to self-aware devices.
Note that a special case of havily semi-controlQ; is whereX = y ® Q; for some function
X, as in Ex. 1. For such a caséandX “share a component”, namely the question being asked,
specified inQ;.

The following result concerns just intelligibility, withub any concern for semi-control or in-
fallibility.

Theorem 7: Consider a pair of self-aware devicBs= (X,Y,Q) andD’ = (X',Y’, Q") where
there are functionR, P, R, P’ such that® andP’ have domaird, Q = R(P) andQ’ = R(P"). If
P is intelligible toD’ andP is intelligible toD’ then the following hold:

) 1QU)I = 1Q(U)I = [PU)I = [P"(U)I.

i) If Q(U) is finite, @ = n(P) = n(Q) andQ = n(P’) = n(Q’).

In particular, takeR andR’ to be identity functions over the associated domains, soRha Q
andP’ = Q. Using this choice, Thm. 7 says that if each self-aware @evémn try to determine
what question the other one is considering, then neitheicdean try to determine anything
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else.
An immediate corollary of Thm. 7 is the following:

Corollary 4: No two self-aware devices whose question functions haviefianges are intelli-
gible to each other.

Note that Coroll. 4 does not rely on the devices being disiisttable (unlike Thm. 1). Indeed,
it holds even if the two devices are identical; a self-awareak whose question function has a
finite range cannot be intelligible to itself.

Coroll. 4 is a powerful limitation on any pair of self-awarevites,D andD’. It says that
for at least one of the devices, sBy there is some questiart € Q’(U) and bitb’, such thaD
cannot everask, “DoesD’ pose the questiogf and answer with the b’ ?”. So whethebD could
correctly answer such a question is moot.

To circumvent Coroll. 4 we can consider self-aware devicksse conclusion functions alone
are intelligible to each other. However combining Thm.sntl 8(i) gives the following result:

Corollary 5: Let D; and D, be two self-aware devices that are infallible, semi-cdntneir
questions, and are distinguishable. If in addition thegiirfach other, then it is not possible that
bothY, is intelligible toD; andY; is intelligible to Do.

With self-aware devices a devi&g may be able to infer whether a self-aware devie
correctly answers the question thit is considering. To analyze this issue we start the following
definition:

Definition 14: If D4 is a_device and, a self-aware device, thdd, corrects D, iff 3 x; such
thatX; = x1 = Y1 = Y2Q2.

Def. 2 means that; = 1iff Yo = Q, i.e., Yo(u) = [Qx(u)](u). Intuitively, if a deviceD; corrects
D,, then there is arx; where havingX; = x; means thaC;'s conclusion tells us whethdd,
correctly answers,. °

Note how weak Def. 14 is. In particular, there is no sense iickit requires thab; can assess
whetherY,(u) = gx(u) for all questionsy, € Q,(U). So long ad; can make that assessment for
any question inQ2(U), we say thaD; correctsD,. Despite this weakness, we have the following
impossibility result, which is similar to Prop. 2(i):

Proposition 7: For any deviceéD; there is a self-aware devié®, thatD,; does not correct.

There are similar results for the definition of correctioridntnote 9, and for the (im)possibility
of correction among multiple devices.

Finally, while there is not room to do so here, many of the emts investigated above for
inference devices can be extended to self-aware devicesexBmple, one might want to modify
the definition of inference complexity slightly for self-ave devices. LeD be a self-aware
infallible device that semi-controls its question funatiandI” a function ovelJ wherel'(U) is

9 Say thaiD; is also self-aware, and th#Q, has both bits in its range (so that probes of it are well-defirithen we
can modify the definition to salthﬁll correctsD;, iff two conditions are met: all probes ifY2Q) are intelligible to
Dj, andDj is infallible for 7(Y2Qy).
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countable and' is intelligible to D. Then rather tha@ (T | (X, Y)), it may be more appropriate
to consider theself-aware inference complexityof T with respect td, defined as

ICIXYQ) £ ) Minomo-rnlL(X)]

fen(D)

Similarly, consider a reality that includes self-awareides, i.e., a reality\y; {F,}) that can be
written as U; {C,}; {Ds}; {Tz}) where in addition to the set of functioriBs} and devicedC,},

we have a set of self-aware devids;}. For such a reality it often makes sense to consider an
augmented reduced form,

R atw, Yaw)) @ @) Ta(w) & (R (Xs(u), Ya(u), Qs(w) ® (X) Qs(V) |
o o

ueU et B

The last term means we include in the tuples all instancetefdrm [Q(u)](v’) in which a
self-aware device’s question for ones evaluated at a fferentu’ # u.

Due to page limits the analysis of such extensions is beylomddope of this paper.

We close with some comments on the relation between inferefith self-aware devices and
work in other fields. Loosely speaking, in the many-worldeipretation of quantum mechan-
ics [25], “observation” only involves the relationship tvetenY andr" (in general, for & whose
range is more than binary). As discussed above, such neddtijos cannot imbue the observation
with semantic meaning. It is by introducingandQ into the definition of self-aware devices that
we allow an act of “observation” to have semantic meanings ®hformalized in Thm. 6, when
it is applied to scenarios where weak inference is integgras successful observation.

Much of formal epistemology concerns “knowledge functiombich are maps from subsets
of U to other subsets df) [42,43,45,44] K;(A), the knowledge functiorK; evaluated for an
argumentA C U, is interpreted as the set of possible worlds in which irdiial i knows that
Ais true. The sef is analogous to specification of the question being asked $Bifeaware
device. So by requiring the specification &f knowledge functions involve semantic meaning,
in contrast to the process of observation in the many-wanlgspretation.

A major distinction between inference devices and bothtikery of knowledge functions and
the many-worlds definition of observation is that inferedegices require that the individual
observer be able to answer multiple questions (one for eatyeroncerning the function being
inferred). As mentioned above, this requirement certairdids in all real-world instances of
“knowledge” or “observation”. Yet it is this seemingly inciwous requirement that drives many
of the results presented above.

Future work involves exploring what inference device tlydwas to say about issues of interest
in the theory of knowledge functions. For example, analgéisommon knowledge starts with a
formalization of what it means for “individuato know that individualj knowsA”. The inference
devices analog would be a formalization of what it means @mviceD to infer that deviceC
infersI™”. Now for this analog to be meaningful, sin€can only infer functions with at least
two values in their range, there must be some sense in whichet both contains & under
which C infersI” and containsi under which it does not. Formally, this means two thingsstEir
it must not be the case simply that> T', since that means th@tinfersI" underall u. Second,
there must be a proper sub&kt c U such that ifU were redefined to bgc (andC andI” were
redefined to havelc as their domains in the obvious way), themiuld be the case that > T.
This proper subset specifies a binary-valued funcfighpyI'c(u) = 1 & u € Uc. The question
of whether ‘D knows thatC knowsI™ then becomes whethé& can inferl'c.
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APPENDIX A: Proofs

This section presents miscellaneous proofs. Since maimgeésults may be counter-intuitive,
the proofs are presented in elaborate detail. The readatdshear in mind though that many of
the proofs simply amount to “higher order” versions of thet@n liar paradox, Cantor diago-
nalization, or the like (just like many proofs in Turing mawohtheory). At the same time, in the
interest of space, little pedagogical discussion is ieskit/nfortunately, the combination makes
many of the proofs a bit of a slog.

Proof of Prop. 1: To prove (i), choose a devic&(Y) whereY(u) = -1 & u € W. Also have
X(u) take on a separate unique value for eachW, i.e.,Yw e W.u € U : w # u, X(w) # X(u).

(Note that by definition ofV, it contains at least two elements.) So by appropriate ehoi@n
X, X(u) = x forcesu to be any desired element 8f.

Choosé. Pick anyy € T(U), and examine the probkethat equals 1ff its argument igy. If
for nou € W doesT’j(u) = y, then choose any that forcesu € W. By constructionX(u) = x =
Y(u) = -1, and in additionX(u) = x = f([j(u)) = —-1. SoX(u) = x = Y(u) = f((u), as
desired.

Now say that there is a € W such that;(u) = y. By hypothesisau” € W : T(u”) # y. By
construction, there is axisuch thatX(u') = x = U = Uu”. SoX(U) = x = U € WIi(U) # v.
The first of those two conclusions means tki@t') = —1. The second means thigl;(U')) = —1.
So againX(u) = x = Y(u) = f(I(u)), as desired. There are no more cases to consider.

To prove (i), choosd € B and letl" be a function with domaity whereI'(u) = b for all u
obeyingY(u) = —1 and for no others. (The surjectivity ¥fensures there is at least one sugh
Consider the probé of I'(U) that equals+1 iff T'(u) = b. For for allu € U, f(I'(u)) = —Y(u).
QED.

Proof of Coroll. 2: To prove the first part of the corollary, letandg be the partitions induced
by X andY, respectively. 1X(U)| = |a| = 2, || = |8]. Sincea is a fine-graining op, this means
thata = B. So without loss of generality we can label the elemeni$(bf) so thatX =Y.

Now hypothesize thaf > I' for somel’. Recall that we require th#it(U)| > 2. Lety andy’
be two distinct elements &f(U) wherel'(u) = y for someu € X-1(~1). Definef, to be the probe
of I'(U) that equals 1ff its argument isy, and definef,, similarly. C > T means3 x, € X(U)
such thatX(u) = x, = f,(['(u)) = Y(U) = X(u) = x,. Sinced u € X"1(-1) such thal'(u) = v,
and sincer(u) = -1 Yu € X-}(-1), x, must equal 1.

This means thaf(u) equalsy across all o)X~}(x,) c U. Therefored u € X~1(-x,) such that
I'(u) = . Moreover, sinces, = Y(X71(x,)) = 1, Y(X}(-%,)) = —1. Therefored u € X~}(-x,)
such thatf, ([(u)) # Y(u). Similarly, v u € X-%(x,), f,(I'(U)) # Y(u). Therefore there is no
X, € X(U) such thatX(u) = x, = f,(I'(u)) = Y(u). So our hypothesis is wrong; there is no
function thatC infers.

Now consider the case whelig > 2. Label the two elements gfas+1 and -1. Sincer is a
fine-graining of3, and sincéB| = 2, there are at least two distinct elements ttiat are contained
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in the same element @f having labeb. Choose one of those elementsof, and leta’ be one
of the other elements af that are contained in that element@ivith labelb.

Form the union o& with all elements ofr that are contained in the elemeni@ivith label-b.
That union is a proper subset of all the elements.dfherefore it picks out a proper subsetbf
W. (Note thatw has non-empty overlap with both both partition elementg.pSo choosé" to
be binary-valued, with values given byu) = biff u € W. Then forX(u) = a, T'(u) = b = Y(u).
On the other hand, foX(u) = &, T'(u) = —b = —=Y(u). So for both probeg$ of T, there is a value
xsuchthaX = x =Y = (). QED.

Proof of Thm. 1: LetC; andC; be the two devices. Sindéfor any inference device is surjective,
Y,(U) = B, and therefore there are two probesYefU). Since by hypothesi€; weakly infers
C,, using the identity probd(y € B) = y establishes thal x; s.t. X;(u) = X3 = Yi(u = Ya.
Similarly, sinceC, weakly infersC,, using the negation prolbigy) = —y establishes that x; s.t.
Xo(u) = X2 = Yz(u) = =Yy(u). Finally, by the hypothesis of setup distinguishabiliiyu* € U
s.t. X (U") = Xg, Xo(U*) = Xo. Combining, we get the contradictiof(u*) = Yo(u*) = =Y1(U¥).
QED.

Proof of Thm. 2: To establish (i), letf be any probe of'(U). C; > I' = 3 x, such that
Xo(U) = X2 = Yo(u) = f(['(u). Inturn,Cy > Cy = A xg suchthaX; = x4 = Y1 = Y, Xo = %
(by choosing the identity probe d%(U)). Combining,X; = x; = Y1(I'). SoC; > T, as claimed
in (i).

To establish (ii), letf be any probe o¥3(U), andx, any member oK3(U).C, > C3 = A x €
Xo(U) such thatXa(u) = xo = Xa(u) = X3, Y2(u) = f(Ys(u)). C1 > C, then implies thaBl x;
such thatX;(u) = x; = Xa(u) = Xg, Y1(u) = Yz(u) (by choosing the identity probe ab(U)).
Combining,X;(u) = X3 = X3(u) = X3, Y1(u) = f(Y3(u)), as desiredQED.

Proof of Prop. 2: To establish the first claim, simply tak® to be the functior” in Prop. 1(ii).

To establish the second claim, focus attention onang X1(U), and defineV = X;(x).
ChooseX; so thatX,(u) take on a separate unique value for each W, i.e.,Yw €,u € U :

W # U, Xao(W) # Xa(u).

First consider the case wheYg(W) has a single element, i.e/;3(u) is the same bit across all
Xgl(xl). Without loss of generality take that bit to be 1. Chods@l) = 1 for somew € W,
andY,(u) = -1 for all otherw € W. Then choose; so thatX;(u) = xo = u = w'. Therefore
Xo(u) = % = X3(u) = X1, Yo(u) = 1. So for the probef of Y;(U) that equalsyy, Xa(u) =
X2 = Yo(u) = f(Y1(u)). On the other hand, by hypotheslsw” € W that difers fromw’, and
3 X, € X(U) such thatXp(u) = X, = u = w”. Moreover,Y,(w’) = -1, by construction of>.
So consider the prob& of Y;(U) that equals-Y;. For allu € W, f/(Y1(u)) = —1. In particular,
this is the case fon = w”’. Combining,Xz(u) = x;, = Xy(u) = X1, Y2(u) = f’(Y1(u)). Sincef
and f’ are the only probes of1(U), there are no more cases to consider for the situation where
Y1(W) is a singleton.

If Y1(W) is not a singleton, sinc®/ contains at least three elements, there is a proper subset
of W, W’, on whichY; takes both values. So by Prop. 1(i) there is a de@aerW that infers
the restriction ofY; to domainW. Define (X;, Y2) to be the same as th@tfor all u € W, with
all members ofX,(W) given values that are not found ¥p(U — W). SinceX;(w) = x; for all
w e W, this means that f € 7(Y1), 3 X2 such thaiXs(u) = Xo = Xy(U) = Xq, Y2(u) = f(Y1(u)).

Combining, sincé(l(Xil(xl)) either is or is not a singleton for eagh € X;(U), we can build
a “partial” deviceC, that strongly infer<C; for each regior)(;l(xl). Furthermore, those regions
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form a partition ofU. So by appropriately “stitching together” the part@l's built for each
x; € X3(U), we build an aggregate devi€® that strongly infersC; over allU, as claimed.
QED.

Proof of Thm. 3: LetC; andC; be two devices and hypothesize that they can strongly iafehn e
other. SinceC; can strongly infel,, it can forceX, to have any desired value and simultaneously
correctly infer the value of, under the identity probe. In other words, there is a funcipn
X2(U) — X3(U) such that for allk,, X; = gll(xg) = Xy = xp andY; = Ys. Let X; be any element
of £1(Xx(V)).

Similarly, by hypothesi€, can forceX; to have any desired value and simultaneously cor-
rectly infer the value ofy; under the negation probe. In other words, there is a fun@ﬁpn
X1(U) - Xp(U) such that for allky, X, = &2 (x1) = X1 = x and¥y = —Ya.

Define X, = £%(%1). ThenXy(U) = &%) = Xp(U) = R = &3,(%) and Yi(u) = Ya(u).
The first of those two conclusions in turn means tgu) = —Y,(u). Combining, we see that
X1 (U) = &%) = Ya(u) = Y1(u) = —Y2(u), which is impossibleQED

Proof of Thm. 4: SinceC, > T,V f € n(I'), 3 Xz such thatX; = x; = Y, = f(I'). Therefore
the set argmig.x,=x=Y,=1m)[-£(X2)] is non-empty. Accordinglyy f € =(I'), we can define an
associated valum?f € X>(U) as some particular element of argmir,—x,-v,= ) [-£ (x2)]-

Now sinceC; > C,, ¥xp, 3 X3 such thalX; = X3 = X3 = Xp, Y1 = Ya. In particular¥ f € n(D),
AXx i Xy =X = X = xé,Yl = Y,. So by definition ofxé, Vien(D),Ax : Xy =% = Xo =
X}, Y1 = ().

Combining,¥ f € #n(I'),

minxl:X1:x1:Y1:f(l")[g(xl)] < minxl;xllezxzzxzfyylzyz[g(xl)]-
Accordingly,
CIC)-CIIC) < Y ming oty [£0) - L)
fen(r)
< Z max, [minX11X1=X1:'X2=Xz,Y1=Yz [X(Xl) - .,Zﬁ(Xz)]]
fen(r)

|7T(r)| max, [minX11X1=X1=>X2=X2,Y1=Yz[g(xl) - X(XZ)]]

Using the equalityr(I')| = [T'(U)| completes the proofQED.

Proof of Thm. 5: By hypothesis, for any, € X>(U), 3 x; such thatX; = x; = Xz = X;,. This is
true for any suckx;. Write the function mapping any sush to the associatex; asé;. Similarly,
there is a functior, that maps any; € X;(U) to anx; € Xp(U) such thatX; = &(%) = Xi =
x;. Using the axiom of choice, this provides us with a singleted mapping fronX;(U) into
X2(U) and vice-versa.

Since havingXz(u) = &(X1) forcesX;(u) = X1, the set ofu € U such thaiX,(u) = &(x;) must
be a subset of those € U such thatXy(u) = Xy, i.e.,V X1, X5 [&(x1)] € X7 (xa). Similarly,
Y %o, X[ (%) € X51(%2). This second equality means in particular that[£1[£x(xq))] C
X5 (€2(x1)). Combining X [£1[é2(x1))] € X *(X4)-

HoweverVY xi, &(£2(x1)) is non-empty. SinceX; is single-valued, this means thdt x,
&1(€2(x1)) = x1. Combining, we see that xi, X;1(x1) € X;1[&2(x1)], and therefored;  [£x(x1)] =
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X71(x1). This in turn means that the s¥5[X;%(x1)] equals the singletotix(x,) for any x, €
X1(U). AccordinglyV u € Xl‘l(xl), Xo(U) = &(x1) = £(X1(u)). In addition, everyu € U obeys
ue Xil(xl) for some x;. Therefore we conclude that for alle U, &(X1(u)) = Xa(u).

This establishes that the partition induced Xyis a fine-graining of the partition induced
by X,. Similar reasoning establishes that the partition induzed; is a fine-graining of the
partition induced byX;. This means that the two partitions must be identiQ&D.

Proof of Coroll. 3: By Thm. 5, we can relabel the image values of the two devicasipsfunc-
tions to express them & = (X, Y1) andC; = (X, Y2).

To prove (i), note that; > C, meansd x € X(U) suchthaX = x = Y; = Y, andd X’ € X(U)
such thatX = X' = Y; = —Y,. But those two properties in turn mean tiagt > C;. A similar
argument establishes that > C; = C; > Co.

To prove (ii), note thaC; > C, means tha¥x € X(u), f € n(Y2), 3 X such thatX = X =
X =x,Yy = f(Y2). In particular,Yx € X(u), 3 X such thatX = X = X = X, Y1 = Y, and3d x”
such thatX = X” = X = X, Y; = —Y,. The only way both conditions can hold isxf = x”. But
that means it is impossible to have bath= Y, andY; = -VYa.

To prove (iii), hypothesize th&; control X. This means in particular thatx € X(U), A X €
X(U) such thatX = X' = Y; = xx = 1 (chooseb = 1 and havef be the probe that equals
1 iff its argument equalg). To havedxx = 1 meansX = X, which in turn meanx’ = x. So
X =x= Y; = 1. This is true for allx € X(U), soY1(u) = 1 Yu € U. However by definition,
the range ofY; must beB. Therefore the hypothesis is wrong. The same argument sthans,
cannot controX. QED.

Proof of Thm. 6: To prove (i), letf be any probe of. Intelligibility meansf € Qq(U). Since
D; semi-controls its question functioBx; : X; = x; = Q; = f. Infallibility then implies that
for anyu such thatX;(u) = X1, Y1(u) = [Q1(w)](u) = f(u). This proves (i).

Next, letf be any probe of>, andx, any element oX,(U). Intelligibility meansf € Q(U).
SinceD; semi-controlsQ;, X;) and Q1, Xp) is surjective Ax; suchthaX; = x3 = Q1 = f, Xy =
x. Infallibility then implies that for any such thaiX;(u) = x3, Y1(u) = [Q1(W)](u) = f(u). This
proves (ii).QED.

Proof of Thm. 7: The cardinality ofr(P) is the cardinality ofP(U), |P(U)|. Let f; and f, be two
separate such probes, so that P(U) — B differs fromf, : P(U) — B. Then as functions
over U, fi(P) and f,(P) differ. Therefore by hypothesis they correspond to two distigctn
Q'(U). So|Q'(U)I = [P(U)I. In turn,|Q(U)I = IR(P(U))I < [P(U)I. So|Q'(U)l > |Q(U)I. Similar
reasoning establishes th@(U)| > |Q’(U)|. So|Q(U)| = |Q’(U)|. TherefordQ(U)| = |P(U)| and
Q' (U)] = |P’(U)]. This proves (i).

Now sinceP’ is intelligible toD, everyf € n(P’) is an element 0Q(U). Therefore foilQ(U)|
finite, (i)’s conclusion thaQ(U)| = |P’(U)| means that there is ripe Q(U) that is not an element
of 7(P’). In other wordsQ = n(P’"). Next, (i)’s conclusion that’ (U)| = [R (P’(U))| establishes
that the partition induced bly’ is identical to the partition induced 8% (P’). Sox(P’) = n(Q’).
Similar reasoning establishes tt@t= 7(P) = n(Q). This establishes (i) QED.

Proof of Coroll. 4: ChooseP = (Y, Q) andR : (Y, Q)(u) —» Q(u). (SoRis a projection map.)

Since {Y, Q) is surjective|P(U)| = |(Y, Q)(U)| = 2|Q(U)|. By Thm. 7, this is impossible if the two
self-aware devices are intelligible to each anot&D.
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Proof of Prop. 3: The validity of the claim in (i) is independent of the questfanction of the
devices, so they can be set arbitrarily. ChoXg)) = Xo(U) = X3(U) = {0, 1}. Then choose the
reduced form of the setup and conclusion functions of thé&cdewn the reality to be the following
four tuples: ([00], [0, 0], [0, Q]); ([0, O], [1, 0], [1, 1]); ([1,1],[0,0Q], [1,0D); ([1,1],[1,0], [0, 1]).
It is straightforward to verify that each pair of devices istihguishable and tha; > C, >
C3 > Cl-

To prove (i), note that under hypothes; > C, = A x : X3 = X1 = Y1 = Y5, C, >
C3 > A X X=X =Y = Y3, oG > Ch = J X1 L Xt = X1 = Yaer = Ya,
Ch>Ci = 3 X, : Xy = X = Y, = —Y1 . Mutual distinguishability means that there is a tuple
in the reduced form of the reality having that sexp¥alues. However that would mean that the
tuple hasy; = —y;. So our hypothesis is wrong.

To prove (iii), simply combine Thm. 3 and Thm. QED.

Proof of Prop. 4: SinceD is acyclic and finite, it contains at least one root node. Lahe such
node a<C;. Hypothesize that there is some other root node in the graph.

Given anyD’ C D, defineS(D’) as the union oD’ with the set of all nodes i that are
successors of a node Y. Similarly, defineP(D’) as the union oD’ with the set of all nodes
in D that are predecessors of a nodén S({C;}) c D since by hypothesis there is more than
one root node. SincB is weakly connected, this means tI&{C1}) c P[S({C1})]. SinceD is
acyclic and finite, this means that there is a nGglee S({C1}) who has a root node predecessor
Cx whereCy ¢ S({Cy1)).

SoC; is a successor of two separate root no@sandC,. By transitivity of strong inference,
this means tha€; > C; andCy > C;. By the hypothesis of the proposition, sing # C;,
those two devices are distinguishable. This means it isilpes®or C; to force X; to have one
value while at the same tin@ forcesX; to have a dierent value. This is a contradictioQED.

Proof of Prop. 5: The proof of (i) is by example. Consider the following set o&fguadruples:
V={-1-1,-1-1);(-1,-1,1-1);(L -1,-1,1);(1L, 1,1,-1),(-1,1,1, 1)}

By Lemma 1,V is the reduced form of a reality consisting of two devi€gsandC,, where we
identify any quadruple itV as the valuexy, yi1, X2, ¥2), so thatX;(U) = X,(U) = B. By inspec-
tion,Cy > C, (e.g9.,X1 = 1 = Y1 = -Y,). Similarly, by inspectiorC; andC, are distinguishable,
and copies of each other. This completes the proof of (i).

To prove the first part of (ii), first note th&; > C, requires that for alk,, there is (arnx;
that forcesX; = x, andY; = Y3), and (anx; that forcesX, = x, andY; = —Y>). In other words,
there is a single-valued map: X;(U) — X;(U) such that the quadrupleX{ = &(x2), Y1 =
y1, X2 = X2, Y2 = Y1) occurs for somg; in some tuple in the reduced form of the reality while
(X1 = €(%2), Y1 = y1, X2 = X}, Y2 = y) does not occur for any; if X, # x, and also does not
occur fory, = —y; if X, = xo. Similarly, there is a single-valued mgp: X;(U) — X1(U) such
that the quadrupleX; = £(x2), Y1 = Y1, X2 = X2, Y2 = —Y1) occurs for someg; in some tuple in
the reduced form of the reality whilX{ = £(x2), Y1 = y1, X2 = X, Y2 = y») does not occur for
anyy, if X, # xz, and also does not occur fgs = y; if X, = X;. By construction, botl§ and¢’
are invertible. Furthermore, for alb, £(x2) # £'(x2). So|X1(U)| = 2|X(U)]. On the other hand,
[X1(U)| = [X2(U)| because&; andC, are copies of each other. Therefore they must have infinite
setup functions.

The existence proof for (ii) is by example. Define a set of qupkks
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T

(1,-1,1,-1);(211-1);(3-121): (4 1,21): (5-1,3,-1),(6,1,3,~1),...}
={(i, 1- 2@ mod 2) [(i/2), 1 - 2((i/2) mod 2)) :i e N}

Next, fix any set of spaces, where the spacey;} = {y2} = B and{x;} = {x} = N all
occur ino. Let S be a subset of the Cartesian product of the spaces Bay that for every
te T, (X1,Y1, X2, Y2) = t for exactly one element &, and no element db contains a quadruple
(X1, Y1, X2, ¥2) ¢ T. (So there is a bijection betwe&andT, given by projecting any element of
S onto its four components corresponding to the spéegs{x.}, {y1} and{y-}.)

By Lemma 1,S is the reduced form of a reality, where we can defadJ) = {xi}, Y1(U) =
{y1}, X2(U) = {x2}, Y2(U) = {y.}. Accordingly group Xj, Y1) into a deviceC; and (X, Y>) into
a deviceC,. By inspection, the relation ifi between pairg; andy; is identical to the relation
in T between pairs, andy,. (Those relations are the paid, —-1); (2 1);(3,-1),...}.) So the
devicesC; andC; in the reality are copies of each other.

Next, note that'x, € N,y; € B, (2% + (ylz‘l),yl, X2, 1 — 2(x; mod 2)) occurs (once) ifi.

Accordingly, X; = 2%, + (y1_2_1) = Xz = Xp. Also, for any fixedx,, choosing eitheX; = 2x,

or X; = 2%, — 1 forcesy; to be either 1 or-1, respectively. Therefore, given thatis fixed, it
also forces eithey; = 1 — 2(x; mod 2) or-y; = 1 — 2(x, mod 2). (For exampleX; = 5 forces
Xz = 3andY; = Yy, while X; = 6 forcesX; = 3 andY; = —Y5.) So the choice o0X; forces either
Y1 = Y orY; = =Y. ThereforeC, > C,. QED.

Proof of Prop. 6: Plugging in, the product of the two inference accuracies is

(Zflen(Yz) max, [Ep(Y1 f1(Y2) | X1)] ) (Zfzen(Yl) max, [Ep(Y2f2(Y1) | Xz)])
2 2 ’

Defineg = Y1Y,. Then we can rewrite our product as

(maxm[EP(g | x1)] N max,, [Ep(—g | Xl)])(maX)(z[EP(g | %2)] N max,[Ep(-9g | Xz)])
2 2 2 2 ’

For|X1(U)| = |X2(U)] = 2, we can rewrite this as

(IEP(Q | X1=1) — Ep(g| X1 = —1)|)(|EP(Q | X2=1) — Ep(g| X2 = —1)|)
2 2 '

Next, since the distinguishability is 1.8; andX; are statistically independent underThere-
fore we can writeP(g, X1, X2) = P(Q | X1, X)P(x1)P(X2). So for exampleP(g | x1) = X5, P(9 |
X1, X2) P(Xz), and

Ep(g | 1) = Y [P =11 %1,%) - P(g = ~1| X1, %)]P(x)

X2

=2[) PG =11 %, %)P(x)] - 1

Now definezz = P(g=1|x =-1, X% =-1),2=P(@=1|x=-1x%=1),z3=P(g=1|
X1 =1% =-1),z2=P(@=1]| xx =1, % = 1). Note that the 4-tuplex, z,, 73, z4) € H so long
as none of its components equals 0. Plugging in,
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Ep(g| X1 =-1)=2[z8+2(1-p)] - 1,
Ep(gl X1 =1)=2[z8+z(1-p)] - 1,
Ep(gl X2 =-1)=2[zne + z5(1 - )] - 1,
Ep(g] X2 = 1)=2[za + z4(1 - @)] - 1.

So the product of inference accuracies is

IBK(2) + M(2][(k(2) + n(2)]| = leBlk(D] + ak(2M(2) + BK(DN(2) + M(DN(D).

This establishes the first part of the proposition. Note tlegtending on the structure of the
mapping from Ky, Xo) — (Y1, Y2), if we require that bothy; be stochastically surjective, there
may be constraints on which quadruples H are allowed. Such restrictions would make our
bound be loose.

Whena = 8 = 1/2, the product of inference accuracies reduces to

A B B0E zn-nm @-2f-@-2)
4 2 4
This establishes the second claim. The final claim is estadsdi by maximizing this expression
overH. QED.

Proof of Prop. 7: Given anyC; = (X, Y1), the proposition is proven if we can construct an
associated, that C; does not correct. To do that, choosg = Yi, and haveQ,(U) consist
of two elementsq; = Y;, andg, = —VY;. DefineQ,’s dependence on € U by requiring that
Y, =-1© Q= q; (i.e.,Yu € U such thaty;(u) = -1, Q»(u) = g; = Y1), and by requiring that
Y1 =1 e Q, =g, (SinceY; is surjective ontd, this definexQ,’s dependence on all &f, and
guarantees th#@,(U)| > 2, as required.)

Plugging in,Q, = —1. Now the square of both 1 and -1 equals 1. Si¥ge= Y, this means
thatY1Y, = 1. Combining,Q, = —Y,Y;. ThereforeY,Q, = —Y;. Therefore it is impossible that
Y: = Y-Q,, i.e., there is no that implies this equalityQED.

APPENDIX B: The lack of restrictions in the definition of weak inference

Note that there is additional structure in Ex. 1 that is nniggh Def. 3. Most obviously, no
analog of{ appears in Def. 3. In addition, Def. 3 does not require thatetbe a component
of X andor Y that can be interpreted as a question-valued function@k&loreover, even if
it is the case thak = y ® Q, Def. 3 allows the value imposed gnto vary depending on
what probe one is considering, in contrast to the case in EAltérnatively, it may be that the
guestionQ(u) does not equal the associated prdkethat is being answered, but so long as
Y(u) = fk(['(u)) whenevery(u) ® Q(u) has a certain value, the device “gets credit” for being
able to answer questiofk. In this, the definition of weak inference doesn’t fully inggothe
mathematical structure underpinning the concept of semarformation. Phrased fierently,
the impossibility results for weak inference hold even tiloweak inference only uses some of
the structure needed to define semantic information. (SeedSer results that involve all of that
structure.)

In addition, it may be that the scientist cannot read the egips’ output display accurately.
In this case the scientist would give incorrect answers aghat's on that display. However
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so long as that inaccuracy was compensated, say by a mistéike dbservation apparatus, we
would still say that the device infefd Any such extra structure that is in Ex. 1 can be added
to the definition of weak inference in Def. 3 if desired, and iimpossibility results presented
here for weak inference will still obtain. (See Sec. 9 forarfalization of inference that contains
additional structure much like that in Ex. 1.)

The other examples in Sec. 2 can be cast as instances of wesdnice in similar fashions. In
particular, all of them have additional structure beyoruat tequired in Def. 3.

It is worth elaborating further this point of just how unmagtive Def. 3 is. One might argue
that to apply to things like computers being used for préaiicta definition of inference should
involve additional formal structure like time-ordering,sgipulations about the Chomsky hierar-
chy power of the device, or stipulations about physical timestricting the device’s operation
like the speed of light, quantum mechanical uncertaingés, More abstractly, one might ar-
gue that for a conclusion of a device to be physically medning should be possible to “act”
upon that conclusion, and then test through the univergsiganse to that action whether the
conclusion is correct. None of this is required.

Note also that Def. 3 doesn't require that the device be usédfér some aspect of world
“outside” of the device. For example, no restrictions areased concerning the physical cou-
pling (or lack thereof) at any particular instant of timeweén the device and what the device
infers. The device and what it is inferring can be anythimrfrtightly coupled with each other
to completely isolated from each other, at any moment.

As an extreme version of the first end of that spectrum, oneewan have the device and
what it is inferring be “the same system”. For example, thithe case iX andor Y depend on
every degree of freedom in the universe at some moment in(iimsme associated reference
frame). In such a situation, the entire universe is the @rfee device, and it is being used to infer
something concerning itself.

As another example of the generality of the definition, nbéd time does not appear in Def. 3.
Ultimately, this is the basis for the fact that the definitmfrinference applies to both prediction
and recollection, aka “retrodiction”. This absence of timeDef. 3 also means that not only
might the device be the entire universe, but it might be thigesaniverse across all time. In such
a situation, the device is not localized either spatiallplysically; the setup aradr conclusion
of the device is jointly specified by all degrees of freedonthefuniverse at all moments.

In addition,X = x = Y = f(I') does not mean that(u) is the same for every € X~1(x). It
simply means that whatever valué@i) has asi varies acros¥X(x) are the same as the values
that f (I'(u)) has. This weakness in the definition of inference is neogdsr it to accommodate
observation devices. (Recall that in such devikés) is how the observation device is set up,
and the conclusion of the device depends on charactergdtite external universe, to be types
of inference devices.)

Along the same line<; > I does not imply that there is exactly one probd dbr which the
associated conclusion value is 1. (This is true even theBfU)) is a full unary representation
of T'(U).) Formally,C > T does not imply that there is exactly one probef I such that
dx: X=x=Y = f(') = 1. There may be more than one suclor even none. So as embodied
in weak inference, foC to predict (something concerning the future state of thearse as
encapsulated in the functioh)does not mean that for eaghe I'(U) there is some associated
guestionx that if embodied inX guarantees that correctly says, “yes, in this universey is
the value that will occurf'(u) = y”. Weak inference only requires that for eagland associated
probe,X can be set up so that the device’s ans¥@r must be correct, not that it can be set up
to be correct and answer in th&iemative.
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Similarly, C > T does not imply tha€ can infer a “coarse-grained” version bf It implies
thatC can correctly answer, “dod¥u) equaly,?” for somey; € I'(U), and that it can correctly
answer “doe$’(u) equaly,” for somey, € I'(U). However it does not imply th&t can correctly
answer, “doe$’(u) equal eithery, ory, or both?”. In particular, for two functions ovér, I" and
I",C > ([, I”) does not imphyC > T.

As another example of how weak Def. 3 is, recall thiét to be interpreted as including all that
the device “knows”. On the other hand, iighat includes a specification of what inference task
the device is being asked to perform. So in the definition fefrence, we don’t even require that
the device knows what inference task it is being asked toparfWe just ask if it can be given
such a task and then come to the right conclusion, even ifésdd know what its conclusion
“means”.

There is no reason one could not introduce additional forstraicture in the definition of
inference to embody some (or all) of these attributes. Farmgpte, say we want to analyze the
property of a device& both inferring somd™ while also being capable of correctly answering
“doesI'(u) equal eithery; or y, or both?”. We could do this by strengthening the definition of
weak inference to also require that for any union of probek, @, there is anx € X(U) such
that X(u) = x implies thatY(u) = 1 & f(I'(u)) = 1 for somef € ®. (In general thex € X(U)
that force the device to infer such unions of multiple probessdiferent from thex € X(U) that
force the device to infer single probes.) As another exangalg we want to hav€ infer some
I" while also knowing how it is set up (so in particular it knowkat probe of" it is inferring).
We can accomplish this by requirig> (T, X).

Whatever dificulties such additional structures might impose, they madidition to the im-
possibility results we derive below; the results below gpp matter what such additional struc-
tures are imposed.

In addition, in Def. 3 there are no restrictions on how, pbasy, the function” gets mapped
to the setup value. So there are no stipulations, implicit or otherwise, abmaw x is inter-
preted. A mechanism for forcing(u) to have the desired value for its inference will typically
exist in any real device. In fact, in general to infeftdient functions will require dierent such
mechanisms. So in the real world there is typically a way fdaee one such mechanism with
another, depending on the functibrbeing inferred.

By leaving the mechanism out of the formal definition of iliece, all such complications are
avoided. In Def. 3, we simply say there exists some apprtpria X(U) for any f(I'), with
nothing mentioned about how to force the inference deviod (aereforeu) to have what the
device is supposed to compufd]), reflected in the valug.

Indeed, given any devic€, we can define a new devié&@ = (X', Y’) where X'(u) itself
specifies thef (I') that we wish to answer using the original devie€Y). So for example, say
(X,Y) is a computer running a physical simulation program whog#@lized state is given by
X(u). ThenC’ is that computer modified by having a “front end” program thauis first to figure
out how to initialize the simulation to have the bit it progs@s a conclusion answer the question
of interest. In this case, trivially, there is no issue in piag fromI to x; that mapping is part of
the setup function of our new devicg/(.).

In particular, say that there is an “external” scientist viyqees into the computet a specifi-
cation of the system whose evolution is to be simulated irctimeputer (i.e., forceX(u) to have
a value that is interpreted as that specification). Then amedefineC’ so that the scientist is
embodied inX’(.). In this definition, we view the human scientist as “part tfé& device (s)he is
using.

In summary, and speaking very colloquially, one can view kvigderence as a necessary
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condition for saying that a device “knows” the actual valdeadunction of the state of the
universe. Whatever else such knowledge entails, it meahgh#hdevice can, by whatever means,
correctly answer (with a yes or a no), “Does the value of tmefion of the state of the universe
equalz?” for any valuez in the codomain of the function.

Like with weak inference, there is no requirement that ackeknows how it has been set up
for it to strongly infer another device. Similarly, therenig requirement that it be able to strongly
infer the unions of probes, no requirements concerningdsstien in the Chomsky hierarchy,
etc. Despite being so pared-down, the definition of strofgrémce is still sficient to exhibit
some non-trivial behavior.

APPENDIX C: Alternative definitions of weak inference

There are alternatives to Def. 3 that accommodate the cases\WlfU)| > 2 without em-
ploying multiple probes. One such alternative uses maltif@vices in concert, each sharing the
same setup function, and each device’s conclusion givinfferdnt bit concerning’s value. As
an example, say thdts range isR. Then we could assign each device to a separate real hum-
ber, and require that for all one and only one device’s conclusion equals 1, namely thieelev
corresponding to the value b{u).

To formalize this, say we have a set of devi¢€s: z € R} and some functiol : U — R. In
addition suppose there is some vectawith components, running over alk € R such that

) Nzer X1 (%) = Ur # o.
iueUr = VzeR,Y,=1iffT(u) =z
iii) Vy € T(U), Au e Ur such thaty,(u) = 1.

Then we can jointly set up the set of devices so that theit fmnclusion give$'(u), and we can
do so without precluding any elementlg(u). In this, the set of devices “jointly inferd”.

Alternatively, we could use a single device, where we mottiy definition of “device” to
allow arbitrary cardinality of the range of With this modification, the conclusion function of
the device does not answer the gquestion of what the value aftecplar function ofl’(U) is.
Rather it directly encodes the valueldiU).

It would appear that under such an alternative we do not reelave the value oX(u) specify
the bit concernind’(u) that we want to infer, and do not need to consider multiptdops. So for
example, it would appear that when the device is being usgatéaliction, under this alternative
X(u) need only specify what is known concerning the currenestathe system whose future
state is being predicted, without specifying a particulaicbncerning that future state that we
wish our device to predict. The conclusi¥nor set of conclusions, as the case might be) would
specify the prediction in full.

Things are not so simple unfortunately. If we wish to allow tlevice to infer functionE with
different ranges, then under this alternative we have to allffardint functions relatiny(u) and
I'(u). This need is especially acute if we want to allU)| to vary.

Such functions should be surjective, to ensure that ourcdevan conclude every possible
value of'(U). (This surjectivity is analogous to the requirement thataonsider all probes in
Def. 3.) For any such functioa : Y(U) — I'(U), we would interpret a particular valogu) as
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saying T(u) = ¢(Y(u))". (This contrasts with the situation whef(U) = B, where we interpret
Y(u) = +1/-1 to mean “ye810”, respectively, in response to the question of whetheneso
associated probe has the valk)

One immediate problem with this alternative definition demence is that it does not allow a
device K, Y) to infer any functiorl(U) whereI’(U)| > |Y(U)|. Such dificulties do not hold for
Def. 3. For example, iK(U) = 3, X is a fine-graining ofY with two of its elements contained in
Y~1(~1), andr is a fine-graining ofX, then X, Y) > I'. (For every probe of (U), x is chosen to
be one of the two elements that caxge) = —1. The precisex chosen for a particular probie
is the one that lies inf(I"))~1(-1).)

Other dificulties arise when we try to specify this alternative ddfnitin full. For example,
one possible such definition is th@tinfersT iff 3 x and functiong : Y(U) — I'(U) such that
X = x = ¢(Y) = T'. Such a definition is unsatisfying in that by not fixiggahead of time, it
leaves unspecified how the conclusion of the device is to psipdlly interpreted as an encoding
of T'(u). (This is in addition to the lack of a fixed mapping frdmo x, a lack which also arises
in Def. 3.)

To get around this problem we could pre-fix a se®, one for every member of a set of
ranges{I’'(U)}. We could then have pick out the precis@ to use. This requires introduction
of substantial additional structure into the definition ef/ites however. (A somewhat related
notion is considered in Sec. 9.) Another possible soluti@uld be along the lines of¢ :
Y(U) — T, Ax such thatX = x = ¢(Y) = I'". But this returns us to a definition of inference
involving multiple functions relatingy andrI".

All of these other dficulties also apply to the definition above of joint inferericeolving
multiple devices. In particular, say we wish to use the saghefadevices to jointly infer function
having ditferent ranges from one another. Then we have to specify solgetbhout how to map
the joint conclusion of the devices into an inference in ahthose ranges. For example, if the
set of devices i§C, : z € R} andI'(U) is non-numeric, we would need to specify something
about how a jont conclusiofY,(u)} gets mapping into that non-numeric space.

As a final possibility, we could stick with a single device dmleY(U) = B, but use some
representation df(U) in X other than the unary representation implicit in Def. 3. Baraple,
we could require that for all binary representatignsf ['(U), for all bitsi in that representation,
there is ark such thaX = x = Y = ¢;(I'). This would allow smaller spacéqU) in general. But
it would still require consideration of multiple functionslatingY andr. It would also raise the
issue of how to encode the elementd’@f) as bits.

For simplicity, in the text we avoid these issues and resdtiention to the original definitions.
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